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Overview

» We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

» We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

» We implement this scheme to obtain timings

» Our resulting scheme is on average faster and smaller

in size than previous work, but with a larger proof of
boundedness.
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The NTRU problem

Definition
Let ¢ > 2 be a prime, d be the ring dimension and

Dy .n b€ a distribution over R,. Sample
(f,9) < Doprrys rejectif fis notinvertible in R, let

h=g/fe€R,
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The NTRU problem

Definition
Let ¢ > 2 be a prime, d be the ring dimension and

Dy .n b€ a distribution over R,. Sample
(f,9) < Doprrys rejectif fis notinvertible in R, let

h=g/f € R,
Search-NTRU: given h, recover any rotation (X'f, Xg)
Of (fa g)

Decision-NTRU: given h, decide if h is computed as
h = g/ f, or if his uniformly sampled from R,.
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NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:
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NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:

» Encryption randomness sampled from a bounded
distribution

» fand g are rejected unless their 2-norm is below some
bound
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NTRU KeyGen

Definition
KeyGen(d7p7 4, ONTRU, t: V):

@ NTNU | ety



NTRU KeyGen

Definition
KeyGen(d,p,q,oNTRU, t,V):
1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.
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NTRU KeyGen

Definition
KeyGen(d,p,q,0NTRU, t,V):

1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

2. Sample g from Dy If (9 mod q) ¢ RY
3. If || flly >t Vd-onrry or |lglly > t - Vd - onTry, restart.
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NTRU KeyGen

Definition
KeyGen(d,p,q,0NTRU, t,V):

1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

2. Sample g from Dy If (9 mod q) ¢ RY

3. If | flly > t-Vd-onrru OF ||glly >t Vd - onTRU, restart.
4. Return secret key sk = f, publickey pk = h :=g/f
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NTRU Encryption

Definition
Enc(m € Ry, pk = h):
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NTRU Encryption

Definition
Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,
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NTRU Encryption

Definition

Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,
2. c=p-(hs+e)+meR,
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NTRU Encryption

Definition

Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,
2. c=p-(hs+e)+meR,
3. Return ciphertext ¢
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NTRU Decryption

Definition
Dec(c € Ry, sk = f):
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NTRU Decryption

Definition
Dec(c € Ry, sk = f):
1. m=(f-¢ mod g) modp
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NTRU Decryption

Definition

Dec(c € Ry, sk = f):
1. m=(f-¢ mod g) modp
2. Return message m
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NTRU Fatigue

Recall: NTRU and the NTRU problem.
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NTRU Fatigue

Recall: NTRU and the NTRU problem.
» Intuitively NTRU key recovery is to find f, g given h

» The hardness of this grows exponentially with
dimension d

> BUT...
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NTRU Fatigue

» Analysis have led to an attack on what is called
overstretched NTRU

> Revealing that the NTRU problems becomes much
easier to solve when ¢ is smalland ¢ >> d

» This “point” is referred to as the fatigue point.
» This is done by figuring out at which point it is easier to

discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis
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Our NTRU Fatigue Experiments
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Our NTRU Fatigue Experiments

» Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ~ d*>8* for ternary case NTRU

> We repeat their experiments/estimates, adjusting for
different values of std. variation ¢ when sampling
secrets from a gaussian

» We estimate that the concrete fatigue point of NTRU

can be described by: ¢ = 0.0058 - o2 - d>#34, which we also
confirm experimentally.
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Hardness Results

Fatigun point

® bt

Fig. 2. Average experimental fatigue point g values plotted against estimated fatigue
point using progressive BKZ with 8 tours on matrix NTRU instances with variance
a? € {2/3,4,16,64,256}. The straight colored lines show the estimated values using the
(modified) estimator from [DvW21]. The colored dots show the experimental results,
where a DSD event has a 50% chance of triggering before an SKR event. The plot is
scaled to log g and log d.
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What is E-Voting?

» For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:
» End-to-End verifiability
» Anonymity and Unlinkability

> Integrity
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A Voting Scheme

Defined in terms of the algorithms needed for the tasks:

» Election Setup
» Ballot Casting
» Ballot Counting
Therefore, we need algorithms for:
» Shuffling
» Distributed Decryption

» Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

@ NTNU | sacnremons



Breakdown: E-Voting
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Breakdown: E-Voting

What happens in each of the phases previously mentioned?

> Election Setup: KeyGen is run by tursted party, the
public params are given to each participant, decryption
shares are distributed to decryption servers

» Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

» Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified
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Components of our E-Voting Scheme
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Shuffle

Definition
Shuffle({ci}iem)
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Shuffle

Definition
Shuffle({ci};c()
1. For each i, compute ¢, < Enc(pk,0)
2. For each i, compute ¢, = ¢; + ¢, mod ¢
3. Sample a random permutation 7 < Perm/|r]
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Shuffle

Definition
Shuffle({ci};c()
1. For each i, compute ¢, < Enc(pk,0)
2. For each i, compute ¢, = ¢; + ¢, mod ¢
3. Sample a random permutation 7 < Perm/|r]

4. Return new set of ballots {é(ﬁ(i))}z‘e[r]
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ZK: [lspur

» We use the shuffle by Aranha et. al. (CCS 23)
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» We use the shuffle by Aranha et. al. (CCS 23)
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ZK: 5o r

» We use the shuffle by Aranha et. al. (CCS 23)
» The proof of shuffle consists of 7 — 1 linearity proofs

» The proof of shuffle is verified if all proofs of linearity is
verified
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ZK: [Tsprarr
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ZK: [Tsprarr

» The IIgararz protocol is quite involved, but in short it
does the following:
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ZK: 1lsnrarz

» The Ilgy 4z protocol is quite involved, but in short it
does the following:

> Create a proof that a batch of equations: As; = ¢; for

i € [l] is satisfied for a set of secret vectors s; with
oo-norm bounded by v
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» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well
» Then we define DDec;({c;} dk;)

i€|r]?

» For each i sample E;; < Sg,,,.,, cOmpute
dSZ'j = dk’] “Ci+p- Eij
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Distributed Decryption
» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well
» Then we define DDec;({c;} dk;)

i€|r]?

» For each i sample E;; < Sg,,,.,, cOmpute
dSZ'j = dk?j “Ci+p- Eij

> For each i compute ([Ey;],7E,;) + Com(E;j, pkc)

» Compute 77y for the linear relation
dSZ‘j = dk}j <G+ p- Ez’j
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Distributed Decryption

>

| 2

>

Recall the NTRU scheme from earlier
Imagine it outputs decryption shares dk; as well
Then we define DDec;({c;} dk;)

i€|r]?

For each i sample E;; < Sg,,,..., COMpute
dSZ'j = dk}j “Ci+p- Eij

For each i compute ([E;;], rg,;) < Com(Ei;, pkc)

Compute 7z n for the linear relation
dsij = dk}j <G+ p- Ez’j

Compute 7pyp to prove that for all i, || Ei;|| . < Bprown
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Distributed Decryption

>

| 2

>

Recall the NTRU scheme from earlier
Imagine it outputs decryption shares dk; as well
Then we define DDec;({c;} dk;)

i€|r]?

For each i sample E;; < Sg,,,..., COMpute
dSZ'j = dk}j “Ci+p- Eij

For each i compute ([E;;], rg,;) < Com(Ei;, pkc)

Compute 7z n for the linear relation
dsij = dk}j <G+ p- Ez’j

Compute 7pyp to prove that for all i, || Ei;|| . < Bprown

Return ds; = ({dsij},c.» ™)
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Combining Decryption Shares

» Parse all decryption shares and verify the proofs 7 ;n
and TBND
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» Parse all decryption shares and verify the proofs 7 ;n
and TBND

» If no verification errors, compute
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Combining Decryption Shares

» Parse all decryption shares and verify the proofs 7 ;n
and TBND

» If no verification errors, compute

v; = (Z dsij mod ¢) mod p
J€E 2

» Return the set of votes {v;}

1ET

@ NTNU | ey

26



ZK: 11, /n

@NTNU |

Norwegian University of
Science and Technology

27



ZK: 11, /n

I ;n produces a proof that a committed value v is a
multiple of another commited value u with respect to a
public scalar g.
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ZK: I1gnp
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ZK: I1gnp

For proving boundedness we use a slightly adapted version
of the TIgps 41 protocol.
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ZK: I1gnp

For proving boundedness we use a slightly adapted version

of the Ilgps 41, protocol.
Compared to previous works we use exact proofs to get
better parameters, though this leads to larger proof sizes.
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Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

c:p(hz sk + Z ex) +m

kelé] kelé1]
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Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

c:p(hz sk + Z ex) +m

keléi] kelé]

After decryption shares are calculated by & decryption
servers we get

v = ( Z ds; mod ¢) mod p
Jelé2]
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Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

=p(h Z Sk + Z ex) +m

kelé] kelé1]

After decryption shares are calculated by & decryption
servers we get

= stj mod ¢) mod p
JjElé2]

So correct decryption would have to satisfy

p-d-t-onTry - (261 - v+ 1/2)(1 +2°°) < [q/2]
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Parameters

Parameter Explanation Value
A Computational security parameter 128
d Ring dimension 2048
q Ciphertext and commitment modulus ~ 299
sec Statistical security parameter 40
P Plaintext modulus 2
t KeyGen rejection parameter 1.058
v Infinity norm of encryption randomness 1
Bcom Infinity norm of commitment randomness 1
1,69 Number of shuffle and decryption servers 4
ONTRU Standard deviation for encryption secret key | 7.12
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Our Implementation

Build upon
https://github.com/dfaranha/lattice-voting-ctrsa2l and

https://github.com/dfaranha/lattice-verifiable-mixnet
by Diego Aranha
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Size Comparison

Scheme

¢i | [BHqll | 7shuf | TLin | TSmall | TBnd
[7TTKB] | 80 | 807120 | 150 | 35 | 20 2
Our [KB] 15 30 63 18 22 22

Table 3: Ciphertext, commitment, and proof sizes per
voter. Note that the two sizes in [7] reflect commitments
to noise-drowning terms and ciphertexts, respectively.
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Timing Comparison

Scheme | Com | Open | Enc | Dec | DDec
045 | 2.76 | 0.74 | 0.64 | 1.56
0.20 | 0.21 | 0.45

[7] [ms
Our [ms| | 0.17 | 0.80

Table 4: Ciphertext and commitment timings. Numbers
were obtained averaging over 10* executions measured
using the cycle counter available on the platform.
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