
CONCRETE NTRU SECURITY
AND ADVANCES IN

PRACTICAL LATTICE-BASED
ELECTRONIC VOTING

Presentation for NaCl

Patrick Hough, Caroline Sandsbråten, Tjerand Silde

November 8, 2023



Contents

Introduction

NTRU

E-Voting

Results

2



Contents

Introduction

NTRU

E-Voting

Results

3



Overview

▶ We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

▶ We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

▶ We implement this scheme to obtain timings

▶ Our resulting scheme is on average faster and smaller
in size than previous work, but with a larger proof of
boundedness.

4



Overview

▶ We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

▶ We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

▶ We implement this scheme to obtain timings

▶ Our resulting scheme is on average faster and smaller
in size than previous work, but with a larger proof of
boundedness.

4



Overview

▶ We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

▶ We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

▶ We implement this scheme to obtain timings

▶ Our resulting scheme is on average faster and smaller
in size than previous work, but with a larger proof of
boundedness.

4



Overview

▶ We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

▶ We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

▶ We implement this scheme to obtain timings

▶ Our resulting scheme is on average faster and smaller
in size than previous work, but with a larger proof of
boundedness.

4



Overview

▶ We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

▶ We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

▶ We implement this scheme to obtain timings

▶ Our resulting scheme is on average faster and smaller
in size than previous work, but with a larger proof of
boundedness.

4



Contents

Introduction

NTRU

E-Voting

Results

5



The NTRU problem

Definition
Let q > 2 be a prime, d be the ring dimension and
DσNTRU be a distribution over Rq. Sample
(f, g)← DσNTRU , reject if f is not invertible in Rq, let
h = g/f ∈ Rq

Search-NTRU: given h, recover any rotation (Xif,Xig)
of (f, g).
Decision-NTRU: given h, decide if h is computed as
h = g/f , or if h is uniformly sampled from Rq.

6



The NTRU problem

Definition
Let q > 2 be a prime, d be the ring dimension and
DσNTRU be a distribution over Rq. Sample
(f, g)← DσNTRU , reject if f is not invertible in Rq, let
h = g/f ∈ Rq

Search-NTRU: given h, recover any rotation (Xif,Xig)
of (f, g).

Decision-NTRU: given h, decide if h is computed as
h = g/f , or if h is uniformly sampled from Rq.

6



The NTRU problem

Definition
Let q > 2 be a prime, d be the ring dimension and
DσNTRU be a distribution over Rq. Sample
(f, g)← DσNTRU , reject if f is not invertible in Rq, let
h = g/f ∈ Rq

Search-NTRU: given h, recover any rotation (Xif,Xig)
of (f, g).
Decision-NTRU: given h, decide if h is computed as
h = g/f , or if h is uniformly sampled from Rq.

6



NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:

▶ Encryption randomness sampled from a bounded
distribution

▶ f and g are rejected unless their 2-norm is below some
bound

7



NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:
▶ Encryption randomness sampled from a bounded

distribution

▶ f and g are rejected unless their 2-norm is below some
bound

7



NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:
▶ Encryption randomness sampled from a bounded

distribution

▶ f and g are rejected unless their 2-norm is below some
bound

7



NTRU KeyGen

Definition
KeyGen(d, p, q, σNTRU , t, ν):

1. Sample f from DσNTRU . If (f mod q) /∈ R×
q or f ̸≡ 1 ∈ Rp,

resample.
2. Sample g from DσNTRU . If (g mod q) /∈ R×

q

3. If ∥f∥2 > t ·
√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU , restart.

4. Return secret key sk = f , public key pk = h := g/f

8



NTRU KeyGen

Definition
KeyGen(d, p, q, σNTRU , t, ν):
1. Sample f from DσNTRU . If (f mod q) /∈ R×

q or f ̸≡ 1 ∈ Rp,
resample.

2. Sample g from DσNTRU . If (g mod q) /∈ R×
q

3. If ∥f∥2 > t ·
√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU , restart.

4. Return secret key sk = f , public key pk = h := g/f

8



NTRU KeyGen

Definition
KeyGen(d, p, q, σNTRU , t, ν):
1. Sample f from DσNTRU . If (f mod q) /∈ R×

q or f ̸≡ 1 ∈ Rp,
resample.

2. Sample g from DσNTRU . If (g mod q) /∈ R×
q

3. If ∥f∥2 > t ·
√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU , restart.

4. Return secret key sk = f , public key pk = h := g/f

8



NTRU KeyGen

Definition
KeyGen(d, p, q, σNTRU , t, ν):
1. Sample f from DσNTRU . If (f mod q) /∈ R×

q or f ̸≡ 1 ∈ Rp,
resample.

2. Sample g from DσNTRU . If (g mod q) /∈ R×
q

3. If ∥f∥2 > t ·
√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU , restart.

4. Return secret key sk = f , public key pk = h := g/f

8



NTRU KeyGen

Definition
KeyGen(d, p, q, σNTRU , t, ν):
1. Sample f from DσNTRU . If (f mod q) /∈ R×

q or f ̸≡ 1 ∈ Rp,
resample.

2. Sample g from DσNTRU . If (g mod q) /∈ R×
q

3. If ∥f∥2 > t ·
√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU , restart.

4. Return secret key sk = f , public key pk = h := g/f

8



NTRU Encryption

Definition
Enc(m ∈ Rp, pk = h):

1. Sample encryption randomness s, e← Sν

2. c = p · (hs+ e) +m ∈ Rq

3. Return ciphertext c

9



NTRU Encryption

Definition
Enc(m ∈ Rp, pk = h):
1. Sample encryption randomness s, e← Sν

2. c = p · (hs+ e) +m ∈ Rq

3. Return ciphertext c

9



NTRU Encryption

Definition
Enc(m ∈ Rp, pk = h):
1. Sample encryption randomness s, e← Sν

2. c = p · (hs+ e) +m ∈ Rq

3. Return ciphertext c

9



NTRU Encryption

Definition
Enc(m ∈ Rp, pk = h):
1. Sample encryption randomness s, e← Sν

2. c = p · (hs+ e) +m ∈ Rq

3. Return ciphertext c

9



NTRU Decryption

Definition
Dec(c ∈ Rq, sk = f):

1. m = (f · c mod q) mod p

2. Return messagem

10



NTRU Decryption

Definition
Dec(c ∈ Rq, sk = f):
1. m = (f · c mod q) mod p

2. Return messagem

10



NTRU Decryption

Definition
Dec(c ∈ Rq, sk = f):
1. m = (f · c mod q) mod p

2. Return messagem

10



NTRU Fatigue

Recall: NTRU and the NTRU problem.

▶ Intuitively NTRU key recovery is to find f, g given h

▶ The hardness of this grows exponentially with
dimension d

▶ BUT...

11



NTRU Fatigue

Recall: NTRU and the NTRU problem.
▶ Intuitively NTRU key recovery is to find f, g given h

▶ The hardness of this grows exponentially with
dimension d

▶ BUT...

11



NTRU Fatigue

Recall: NTRU and the NTRU problem.
▶ Intuitively NTRU key recovery is to find f, g given h

▶ The hardness of this grows exponentially with
dimension d

▶ BUT...

11



NTRU Fatigue

Recall: NTRU and the NTRU problem.
▶ Intuitively NTRU key recovery is to find f, g given h

▶ The hardness of this grows exponentially with
dimension d

▶ BUT...

11



NTRU Fatigue

▶ Analysis have led to an attack on what is called
overstretched NTRU

▶ Revealing that the NTRU problems becomes much
easier to solve when σ is small and q >> d

▶ This “point” is referred to as the fatigue point.

▶ This is done by figuring out at which point it is easier to
discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis

12



NTRU Fatigue

▶ Analysis have led to an attack on what is called
overstretched NTRU

▶ Revealing that the NTRU problems becomes much
easier to solve when σ is small and q >> d

▶ This “point” is referred to as the fatigue point.

▶ This is done by figuring out at which point it is easier to
discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis

12



NTRU Fatigue

▶ Analysis have led to an attack on what is called
overstretched NTRU

▶ Revealing that the NTRU problems becomes much
easier to solve when σ is small and q >> d

▶ This “point” is referred to as the fatigue point.

▶ This is done by figuring out at which point it is easier to
discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis

12



NTRU Fatigue

▶ Analysis have led to an attack on what is called
overstretched NTRU

▶ Revealing that the NTRU problems becomes much
easier to solve when σ is small and q >> d

▶ This “point” is referred to as the fatigue point.

▶ This is done by figuring out at which point it is easier to
discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis

12



Our NTRU Fatigue Experiments

▶ Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ≈ d2.484 for ternary case NTRU

▶ We repeat their experiments/estimates, adjusting for
different values of std. variation σ when sampling
secrets from a gaussian

▶ We estimate that the concrete fatigue point of NTRU
can be described by: q = 0.0058 · σ2 · d2.484, which we also
confirm experimentally.

13



Our NTRU Fatigue Experiments

▶ Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ≈ d2.484 for ternary case NTRU

▶ We repeat their experiments/estimates, adjusting for
different values of std. variation σ when sampling
secrets from a gaussian

▶ We estimate that the concrete fatigue point of NTRU
can be described by: q = 0.0058 · σ2 · d2.484, which we also
confirm experimentally.

13



Our NTRU Fatigue Experiments

▶ Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ≈ d2.484 for ternary case NTRU

▶ We repeat their experiments/estimates, adjusting for
different values of std. variation σ when sampling
secrets from a gaussian

▶ We estimate that the concrete fatigue point of NTRU
can be described by: q = 0.0058 · σ2 · d2.484, which we also
confirm experimentally.

13



Our NTRU Fatigue Experiments

▶ Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ≈ d2.484 for ternary case NTRU

▶ We repeat their experiments/estimates, adjusting for
different values of std. variation σ when sampling
secrets from a gaussian

▶ We estimate that the concrete fatigue point of NTRU
can be described by: q = 0.0058 · σ2 · d2.484, which we also
confirm experimentally.

13



Hardness Results

14



Contents

Introduction

NTRU

E-Voting

Results

15



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



What is E-Voting?

▶ For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

▶ End-to-End verifiability

▶ Anonymity and Unlinkability

▶ Integrity

16



A Voting Scheme

Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



A Voting Scheme
Defined in terms of the algorithms needed for the tasks:

▶ Election Setup

▶ Ballot Casting

▶ Ballot Counting

Therefore, we need algorithms for:

▶ Shuffling

▶ Distributed Decryption

▶ Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

17



Breakdown: E-Voting

18



Breakdown: E-Voting
What happens in each of the phases previously mentioned?

▶ Election Setup: KeyGen is run by tursted party, the
public params are given to each participant, decryption
shares are distributed to decryption servers

▶ Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

▶ Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified

19



Breakdown: E-Voting
What happens in each of the phases previously mentioned?
▶ Election Setup: KeyGen is run by tursted party, the

public params are given to each participant, decryption
shares are distributed to decryption servers

▶ Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

▶ Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified

19



Breakdown: E-Voting
What happens in each of the phases previously mentioned?
▶ Election Setup: KeyGen is run by tursted party, the

public params are given to each participant, decryption
shares are distributed to decryption servers

▶ Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

▶ Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified

19



Breakdown: E-Voting
What happens in each of the phases previously mentioned?
▶ Election Setup: KeyGen is run by tursted party, the

public params are given to each participant, decryption
shares are distributed to decryption servers

▶ Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

▶ Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified

19



Components of our E-Voting Scheme

20



Shuffle

21



Shuffle

Definition
Shuffle({ci}i∈[τ ])

1. For each i, compute c′i ← Enc(pk, 0)

2. For each i, compute ĉi = ci + c′i mod q

3. Sample a random permutation π ← Perm[τ ]

4. Return new set of ballots
{
ĉ(π(i))

}
i∈[τ ]

22



Shuffle

Definition
Shuffle({ci}i∈[τ ])
1. For each i, compute c′i ← Enc(pk, 0)

2. For each i, compute ĉi = ci + c′i mod q

3. Sample a random permutation π ← Perm[τ ]

4. Return new set of ballots
{
ĉ(π(i))

}
i∈[τ ]

22



Shuffle

Definition
Shuffle({ci}i∈[τ ])
1. For each i, compute c′i ← Enc(pk, 0)

2. For each i, compute ĉi = ci + c′i mod q

3. Sample a random permutation π ← Perm[τ ]

4. Return new set of ballots
{
ĉ(π(i))

}
i∈[τ ]

22



Shuffle

Definition
Shuffle({ci}i∈[τ ])
1. For each i, compute c′i ← Enc(pk, 0)

2. For each i, compute ĉi = ci + c′i mod q

3. Sample a random permutation π ← Perm[τ ]

4. Return new set of ballots
{
ĉ(π(i))

}
i∈[τ ]

22



Shuffle

Definition
Shuffle({ci}i∈[τ ])
1. For each i, compute c′i ← Enc(pk, 0)

2. For each i, compute ĉi = ci + c′i mod q

3. Sample a random permutation π ← Perm[τ ]

4. Return new set of ballots
{
ĉ(π(i))

}
i∈[τ ]

22



ZK: ΠSHUF

▶ We use the shuffle by Aranha et. al. (CCS 23)

▶ The proof of shuffle consists of τ − 1 linearity proofs

▶ The proof of shuffle is verified if all proofs of linearity is
verified

23



ZK: ΠSHUF

▶ We use the shuffle by Aranha et. al. (CCS 23)

▶ The proof of shuffle consists of τ − 1 linearity proofs

▶ The proof of shuffle is verified if all proofs of linearity is
verified

23



ZK: ΠSHUF

▶ We use the shuffle by Aranha et. al. (CCS 23)

▶ The proof of shuffle consists of τ − 1 linearity proofs

▶ The proof of shuffle is verified if all proofs of linearity is
verified

23



ZK: ΠSHUF

▶ We use the shuffle by Aranha et. al. (CCS 23)

▶ The proof of shuffle consists of τ − 1 linearity proofs

▶ The proof of shuffle is verified if all proofs of linearity is
verified

23



ZK: ΠSMALL

▶ The ΠSMALL protocol is quite involved, but in short it
does the following:

▶ Create a proof that a batch of equations: Asi = ti for
i ∈ [l] is satisfied for a set of secret vectors si with
∞-norm bounded by ν

24



ZK: ΠSMALL

▶ The ΠSMALL protocol is quite involved, but in short it
does the following:

▶ Create a proof that a batch of equations: Asi = ti for
i ∈ [l] is satisfied for a set of secret vectors si with
∞-norm bounded by ν

24



ZK: ΠSMALL

▶ The ΠSMALL protocol is quite involved, but in short it
does the following:

▶ Create a proof that a batch of equations: Asi = ti for
i ∈ [l] is satisfied for a set of secret vectors si with
∞-norm bounded by ν

24



Distributed Decryption

▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Distributed Decryption
▶ Recall the NTRU scheme from earlier

▶ Imagine it outputs decryption shares dkj as well

▶ Then we define DDecj({ci}i∈[τ ], dkj)

▶ For each i sample Eij ← SBDrown
, compute

dsij = dkj · ci + p · Eij

▶ For each i compute (JEijK, rEij )← Com(Eij , pkC)

▶ Compute πLIN for the linear relation
dsij = dkj · ci + p · Eij

▶ Compute πBND to prove that for all i, ∥Eij∥∞ ≤ BDrown

▶ Return dsj = ({dsij}i∈τ , πD)

25



Combining Decryption Shares

▶ Parse all decryption shares and verify the proofs πLIN
and πBND

▶ If no verification errors, compute

vi = (
∑
j∈ξ2

dsij mod q) mod p

▶ Return the set of votes {vi}i∈τ

26



Combining Decryption Shares

▶ Parse all decryption shares and verify the proofs πLIN
and πBND

▶ If no verification errors, compute

vi = (
∑
j∈ξ2

dsij mod q) mod p

▶ Return the set of votes {vi}i∈τ

26



Combining Decryption Shares

▶ Parse all decryption shares and verify the proofs πLIN
and πBND

▶ If no verification errors, compute

vi = (
∑
j∈ξ2

dsij mod q) mod p

▶ Return the set of votes {vi}i∈τ

26



Combining Decryption Shares

▶ Parse all decryption shares and verify the proofs πLIN
and πBND

▶ If no verification errors, compute

vi = (
∑
j∈ξ2

dsij mod q) mod p

▶ Return the set of votes {vi}i∈τ

26



ZK: ΠLIN

27



ZK: ΠLIN

ΠLIN produces a proof that a committed value v is a
multiple of another commited value u with respect to a
public scalar g.

28



ZK: ΠBND

29



ZK: ΠBND

For proving boundedness we use a slightly adapted version
of the ΠSMALL protocol.

30



ZK: ΠBND

For proving boundedness we use a slightly adapted version
of the ΠSMALL protocol.
Compared to previous works we use exact proofs to get
better parameters, though this leads to larger proof sizes.

31



Contents

Introduction

NTRU

E-Voting

Results

32



Parameters

33



Parameters

Decryption Correctness A ciphertext after the mix-net of ξ1
shuffle servers is on the form

c = p(h
∑
k∈[ξ1]

sk +
∑
k∈[ξ1]

ek) +m

34



Parameters

Decryption Correctness A ciphertext after the mix-net of ξ1
shuffle servers is on the form

c = p(h
∑
k∈[ξ1]

sk +
∑
k∈[ξ1]

ek) +m

After decryption shares are calculated by ξ2 decryption
servers we get

v′ = (
∑
j∈[ξ2]

dsj mod q) mod p

35



Parameters
Decryption Correctness A ciphertext after the mix-net of ξ1
shuffle servers is on the form

c = p(h
∑
k∈[ξ1]

sk +
∑
k∈[ξ1]

ek) +m

After decryption shares are calculated by ξ2 decryption
servers we get

v′ = (
∑
j∈[ξ2]

dsj mod q) mod p

So correct decryption would have to satisfy

p · d · t · σNTRU · (2ξ1 · ν + 1/2)(1 + 2sec) < ⌊q/2⌋

36



Parameters

Parameter Explanation Value
λ Computational security parameter 128

d Ring dimension 2048

q Ciphertext and commitment modulus ≈ 259

sec Statistical security parameter 40

p Plaintext modulus 2

t KeyGen rejection parameter 1.058

ν Infinity norm of encryption randomness 1

BCom Infinity norm of commitment randomness 1

ξ1, ξ2 Number of shuffle and decryption servers 4

σNTRU Standard deviation for encryption secret key 7.12

37



Our Implementation

Build upon
https://github.com/dfaranha/lattice-voting-ctrsa21 and
https://github.com/dfaranha/lattice-verifiable-mixnet
by Diego Aranha

38

https://github.com/dfaranha/lattice-voting-ctrsa21
https://github.com/dfaranha/lattice-verifiable-mixnet


Size Comparison

39



Timing Comparison

40



Questions?

41


	Introduction
	NTRU
	E-Voting
	Results

