B NTNU | siencianaechnoiosy

CONCRETE NTRU SECURITY
AND ADVANCES IN
PRACTICAL LATTICE-BASED
ELECTRONIC VOTING

Presentation for NacCl

Patrick Hough, Caroline Sandsbraten, Tjerand Silde

November 8, 2023

Contents

Introduction

NTRU

E-Voting

Results

@ NTNU | sty

Contents

Introduction

@ NTNU | sty

Overview

@ NTNU | sty

Overview

» We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

@ NTNU | sacnremons

Overview

» We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

» We adapt the E-Voting scheme from Aranha et al (CCS

2023) using NTRU to reduce ciphertext size and enc/dec
time

@ NTNU | sacnremons

Overview

» We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

» We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

» We implement this scheme to obtain timings

@ NTNU | sacnremons

Overview

» We do a generalised analysis of the NTRU Fatigue point
to be better able to set good parameters for our voting
scheme

» We adapt the E-Voting scheme from Aranha et al (CCS
2023) using NTRU to reduce ciphertext size and enc/dec
time

» We implement this scheme to obtain timings

» Our resulting scheme is on average faster and smaller

in size than previous work, but with a larger proof of
boundedness.

@ NTNU | sacnrecmons

Contents

NTRU

@ NTNU | sty

The NTRU problem

Definition
Let ¢ > 2 be a prime, d be the ring dimension and

Dy .n b€ a distribution over R,. Sample
(f,9) < Doprrys rejectif fis notinvertible in R, let

h=g/fe€R,

@ NTNU | ety

The NTRU problem

Definition
Let ¢ > 2 be a prime, d be the ring dimension and

Dy .n b€ a distribution over R,. Sample
(f,9) < Doprrys rejectif fis notinvertible in R, let

h=g/f € R,
Search-NTRU: given h, recover any rotation (X'f, Xg)
Of (fa g)

@ NTNU | ccnremons

The NTRU problem

Definition
Let ¢ > 2 be a prime, d be the ring dimension and

Dy .n b€ a distribution over R,. Sample
(f,9) < Doprrys rejectif fis notinvertible in R, let

h=g/f € R,
Search-NTRU: given h, recover any rotation (X'f, Xg)
Of (fa g)

Decision-NTRU: given h, decide if h is computed as
h = g/ f, or if his uniformly sampled from R,.

@ NTNU | sacnrecmons

NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:

@ NTNU | sy

NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:

» Encryption randomness sampled from a bounded
distribution

@ NTNU | cacmremons

NTRU Encryption

We make 2 changes from traditional NTRU to achieve
perfectly correct decryption:

» Encryption randomness sampled from a bounded
distribution

» fand g are rejected unless their 2-norm is below some
bound

@ NTNU | cacnremons

NTRU KeyGen

Definition
KeyGen(d7p7 4, ONTRU, t: V):

@ NTNU | ety

NTRU KeyGen

Definition
KeyGen(d,p,q,oNTRU, t,V):
1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

@ NTNU | ety

NTRU KeyGen

Definition
KeyGen(d,p,q,0NTRU, t,V):

1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

2. Sample g from Dy If (9 mod q) ¢ RY

@ NTNU | ety

NTRU KeyGen

Definition
KeyGen(d,p,q,0NTRU, t,V):

1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

2. Sample g from Dy If (9 mod q) ¢ RY
3. If || flly >t Vd-onrry or |lglly > t - Vd - onTry, restart.

@ NTNU | ety

NTRU KeyGen

Definition
KeyGen(d,p,q,0NTRU, t,V):

1. Sample f from Dy, If (f mod q) ¢ Rf or f #1 € Ry,
resample.

2. Sample g from Dy If (9 mod q) ¢ RY

3. If | flly > t-Vd-onrru OF ||glly >t Vd - onTRU, restart.
4. Return secret key sk = f, publickey pk = h :=g/f

@ NTNU | ccnrecmons

NTRU Encryption

Definition
Enc(m € Ry, pk = h):

@ NTNU | sy

NTRU Encryption

Definition
Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,

@ NTNU | sy

NTRU Encryption

Definition

Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,
2. c=p-(hs+e)+meR,

@ NTNU | sy

NTRU Encryption

Definition

Enc(m € Ry, pk = h):
1. Sample encryption randomness s, e < S,
2. c=p-(hs+e)+meR,
3. Return ciphertext ¢

@ NTNU | sy

NTRU Decryption

Definition
Dec(c € Ry, sk = f):

@ NTNU | ety

NTRU Decryption

Definition
Dec(c € Ry, sk = f):
1. m=(f-¢ mod g) modp

@ NTNU | ety

NTRU Decryption

Definition

Dec(c € Ry, sk = f):
1. m=(f-¢ mod g) modp
2. Return message m

@ NTNU | ety

NTRU Fatigue

Recall: NTRU and the NTRU problem.

@ NTNU | sty

NTRU Fatigue

Recall: NTRU and the NTRU problem.
» Intuitively NTRU key recovery is to find f, g given h

@ NTNU | sacnremons

NTRU Fatigue

Recall: NTRU and the NTRU problem.
» Intuitively NTRU key recovery is to find f, g given h

» The hardness of this grows exponentially with
dimension d

@ NTNU | sacnremons

NTRU Fatigue

Recall: NTRU and the NTRU problem.
» Intuitively NTRU key recovery is to find f, g given h

» The hardness of this grows exponentially with
dimension d

> BUT...

@ NTNU | cacnrecmons

NTRU Fatigue

» Analysis have led to an attack on what is called
overstretched NTRU

@ NTNU | ey

NTRU Fatigue

» Analysis have led to an attack on what is called
overstretched NTRU

> Revealing that the NTRU problems becomes much
easier to solve when ¢ is smalland ¢ >> d

@ NTNU | sacnremons

NTRU Fatigue

» Analysis have led to an attack on what is called
overstretched NTRU

> Revealing that the NTRU problems becomes much
easier to solve when ¢ is smalland ¢ >> d

» This “point” is referred to as the fatigue point.

@ NTNU | sacnremons

NTRU Fatigue

» Analysis have led to an attack on what is called
overstretched NTRU

> Revealing that the NTRU problems becomes much
easier to solve when ¢ is smalland ¢ >> d

» This “point” is referred to as the fatigue point.
» This is done by figuring out at which point it is easier to

discover a dense sublattice generated by the secret key
using BKZ than to find a secret key in the reduced basis

@ NTNU | sacnremons

Our NTRU Fatigue Experiments

@ NTNU | sty

Our NTRU Fatigue Experiments

» Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ~ d*>8* for ternary case NTRU

@ NTNU | sty

Our NTRU Fatigue Experiments

» Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ~ d*>8* for ternary case NTRU

> We repeat their experiments/estimates, adjusting for

different values of std. variation ¢ when sampling
secrets from a gaussian

@ NTNU | sacnrecmons

Our NTRU Fatigue Experiments

» Previous work by by Ducas and van Woerden found
experimentally that the fatigue point was when
q ~ d*>8* for ternary case NTRU

> We repeat their experiments/estimates, adjusting for
different values of std. variation ¢ when sampling
secrets from a gaussian

» We estimate that the concrete fatigue point of NTRU

can be described by: ¢ = 0.0058 - o2 - d>#34, which we also
confirm experimentally.

@ NTNU | sacnrecmons 13

Hardness Results

Fatigun point

® bt

Fig. 2. Average experimental fatigue point g values plotted against estimated fatigue
point using progressive BKZ with 8 tours on matrix NTRU instances with variance
a? € {2/3,4,16,64,256}. The straight colored lines show the estimated values using the
(modified) estimator from [DvW21]. The colored dots show the experimental results,
where a DSD event has a 50% chance of triggering before an SKR event. The plot is
scaled to log g and log d.

@ NTNU | sy

Contents

E-Voting

@NTNU |

Norwegian University of
Science and Technology

What is E-Voting?

@ NTNU | sty

What is E-Voting?

» For us: employ cryptographic protocols to make secure
and anonymous voting possible

@ NTNU | sty

What is E-Voting?

» For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

@ NTNU | cacnremons

What is E-Voting?

» For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:

» End-to-End verifiability

@ NTNU | cacnremons

What is E-Voting?
» For us: employ cryptographic protocols to make secure
and anonymous voting possible
Important features for e-voting:
» End-to-End verifiability

» Anonymity and Unlinkability

@ NTNU | cacnremons

What is E-Voting?

» For us: employ cryptographic protocols to make secure
and anonymous voting possible

Important features for e-voting:
» End-to-End verifiability
» Anonymity and Unlinkability

> Integrity

@ NTNU | cacnremons 16

A Voting Scheme

@ NTNU | sty

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:

@ NTNU | sty

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:

» Election Setup

@ NTNU | sty

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:
» Election Setup

» Ballot Casting

@ NTNU | sty

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:
» Election Setup
» Ballot Casting

» Ballot Counting

@ NTNU | sacnremons

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:
» Election Setup
» Ballot Casting
» Ballot Counting

Therefore, we need algorithms for:

@ NTNU | sacnremons

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:
» Election Setup
» Ballot Casting
» Ballot Counting

Therefore, we need algorithms for:

» Shuffling

@ NTNU | sacnremons

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:
» Election Setup
» Ballot Casting
» Ballot Counting
Therefore, we need algorithms for:
» Shuffling

» Distributed Decryption

@ NTNU | sacnremons

A Voting Scheme

Defined in terms of the algorithms needed for the tasks:

» Election Setup
» Ballot Casting
» Ballot Counting
Therefore, we need algorithms for:
» Shuffling
» Distributed Decryption

» Mechanisms to verify that encryption, decryption and
shuffling are computed honestly/correct

@ NTNU | sacnremons

Breakdown: E-Voting

@ NTNU | sy

Breakdown: E-Voting

What happens in each of the phases previously mentioned?

@ NTNU | sty

Breakdown: E-Voting

What happens in each of the phases previously mentioned?

> Election Setup: KeyGen is run by tursted party, the
public params are given to each participant, decryption
shares are distributed to decryption servers

@ NTNU | cacnremons 19

Breakdown: E-Voting

What happens in each of the phases previously mentioned?

> Election Setup: KeyGen is run by tursted party, the
public params are given to each participant, decryption
shares are distributed to decryption servers

» Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

@ NTNU | cacnremons

Breakdown: E-Voting

What happens in each of the phases previously mentioned?

> Election Setup: KeyGen is run by tursted party, the
public params are given to each participant, decryption
shares are distributed to decryption servers

» Ballot Casting: Voters cast their ballot, their device
encrypts it, along with a ballot proof

» Ballot Counting: Encrypted ballots are shuffled, a
shuffle proof is created, the decryption servers receives
ballots, verifies the shuffle proofs, computes decryption
shares and proof of correct decryption, the decryption
shares are then combined after decryption proofs are
verified

@ NTNU | cacnremons

Components of our E-Voting Scheme

{8y ({dsi}.7p,)

S, () b

"} (e 1P}

RCRCRS OO
\ Y,
{elohy ({dsi e} 7o,)

s, Sy TSe,

@ NTNU | sy

20

Shuffle

@NTNU |

Norwegian University of
Science and Technology

21

Shuffle

Definition
Shuffle({ci}iem)

@ NTNU | ety

22

Shuffle

Definition
1. For each i, compute ¢, < Enc(pk,0)

@ NTNU | ety

22

Shuffle

Definition
1. For each i, compute ¢, < Enc(pk,0)
2. For each i, compute ¢, = ¢; + ¢, mod ¢

@ NTNU | ety

22

Shuffle

Definition
Shuffle({ci};c()
1. For each i, compute ¢, < Enc(pk,0)
2. For each i, compute ¢, = ¢; + ¢, mod ¢
3. Sample a random permutation 7 < Perm/|r]

@ NTNU | cacnremone

22

Shuffle

Definition
Shuffle({ci};c()
1. For each i, compute ¢, < Enc(pk,0)
2. For each i, compute ¢, = ¢; + ¢, mod ¢
3. Sample a random permutation 7 < Perm/|r]

4. Return new set of ballots {é(ﬁ(i))}z‘e[r]

@ NTNU | cacnremone

22

ZK: HSHUF

@NTNU |

Norwegian University of
Science and Technology

23

ZK: [lspur

» We use the shuffle by Aranha et. al. (CCS 23)

@ NTNU | sty

23

ZK: [lspur

» We use the shuffle by Aranha et. al. (CCS 23)

» The proof of shuffle consists of 7 — 1 linearity proofs

@ NTNU | ccnremons

23

ZK: 5o r

» We use the shuffle by Aranha et. al. (CCS 23)
» The proof of shuffle consists of 7 — 1 linearity proofs

» The proof of shuffle is verified if all proofs of linearity is
verified

@ NTNU | ccnremons

23

ZK: [Tsprarr

@ NTNU | ety

24

ZK: [Tsprarr

» The IIgararz protocol is quite involved, but in short it
does the following:

@ NTNU | cacnrecmons

24

ZK: 1lsnrarz

» The Ilgy 4z protocol is quite involved, but in short it
does the following:

> Create a proof that a batch of equations: As; = ¢; for

i € [l] is satisfied for a set of secret vectors s; with
oo-norm bounded by v

@ NTNU | cacnrecmons

24

Distributed Decryption

@ NTNU | sty

25

Distributed Decryption

» Recall the NTRU scheme from earlier

@ NTNU | sty

25

Distributed Decryption

» Recall the NTRU scheme from earlier

> Imagine it outputs decryption shares dk; as well

@ NTNU | sty

25

Distributed Decryption

» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well
» Then we define DDec;({c;} dk;)

i€|r]?

@ NTNU | sty

25

Distributed Decryption

» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well

» Then we define DDec;({c;} dk;)

i€|r]?

» For each i sample E;; < Sg,,,.,, cOmpute
dSZ'j = dk’] “Ci+p- Eij

@ NTNU | cacnrecmons

25

Distributed Decryption

» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well
» Then we define DDec;({c;} dk;)

i€|r]?

» For each i sample E;; < Sg,,,.,, cOmpute
dSZ'j = dk’] “Ci+p- Eij

> For each i compute ([Ey;],7E,;) + Com(E;j, pkc)

@ NTNU | ccnremons

25

Distributed Decryption
» Recall the NTRU scheme from earlier
> Imagine it outputs decryption shares dk; as well
» Then we define DDec;({c;} dk;)

i€|r]?

» For each i sample E;; < Sg,,,.,, cOmpute
dSZ'j = dk?j “Ci+p- Eij

> For each i compute ([Ey;],7E,;) + Com(E;j, pkc)

» Compute 77y for the linear relation
dSZ‘j = dk}j <G+ p- Ez’j

@ NTNU | ccnremons

Distributed Decryption

>

| 2

>

Recall the NTRU scheme from earlier
Imagine it outputs decryption shares dk; as well
Then we define DDec;({c;} dk;)

i€|r]?

For each i sample E;; < Sg,,,..., COMpute
dSZ'j = dk}j “Ci+p- Eij

For each i compute ([E;;], rg,;) < Com(Ei;, pkc)

Compute 7z n for the linear relation
dsij = dk}j <G+ p- Ez’j

Compute 7pyp to prove that for all i, || Ei;|| . < Bprown

@ NTNU | ccnremons

25

Distributed Decryption

>

| 2

>

Recall the NTRU scheme from earlier
Imagine it outputs decryption shares dk; as well
Then we define DDec;({c;} dk;)

i€|r]?

For each i sample E;; < Sg,,,..., COMpute
dSZ'j = dk}j “Ci+p- Eij

For each i compute ([E;;], rg,;) < Com(Ei;, pkc)

Compute 7z n for the linear relation
dsij = dk}j <G+ p- Ez’j

Compute 7pyp to prove that for all i, || Ei;|| . < Bprown

Return ds; = ({dsij},c.» ™)

@ NTNU | ccniremons

25

Combining Decryption Shares

@ NTNU | sty

26

Combining Decryption Shares

» Parse all decryption shares and verify the proofs 7 ;n
and TBND

@ NTNU | ey

26

Combining Decryption Shares

» Parse all decryption shares and verify the proofs 7 ;n
and TBND

» If no verification errors, compute

v; = (Z dsij mod ¢) mod p
J€E 2

@ NTNU | ey

26

Combining Decryption Shares

» Parse all decryption shares and verify the proofs 7 ;n
and TBND

» If no verification errors, compute

v; = (Z dsij mod ¢) mod p
J€E 2

» Return the set of votes {v;}

1ET

@ NTNU | ey

26

ZK: 11, /n

@NTNU |

Norwegian University of
Science and Technology

27

ZK: 11, /n

I ;n produces a proof that a committed value v is a
multiple of another commited value u with respect to a
public scalar g.

@ NTNU | ccnrecmons

28

ZK: I1gnp

@NTNU |

Norwegian University of
Science and Technology

29

ZK: I1gnp

For proving boundedness we use a slightly adapted version
of the TIgps 41 protocol.

@ NTNU | ccnrecmons

30

ZK: I1gnp

For proving boundedness we use a slightly adapted version

of the Ilgps 41, protocol.
Compared to previous works we use exact proofs to get
better parameters, though this leads to larger proof sizes.

@ NTNU | ccnrecmons

31

Contents

Results

@NTNU |

Norwegian University of
Science and Technology

32

Parameters

@ NTNU | sy

33

Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

c:p(hz sk + Z ex) +m

kelé] kelé1]

@ NTNU | ccnrecmons

34

Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

c:p(hz sk + Z ex) +m

keléi] kelé]

After decryption shares are calculated by & decryption
servers we get

v = (Z ds; mod ¢) mod p
Jelé2]

@ NTNU | ccnrecmons 35

Parameters

Decryption Correctness A ciphertext after the mix-net of &
shuffle servers is on the form

=p(h Z Sk + Z ex) +m

kelé] kelé1]

After decryption shares are calculated by & decryption
servers we get

= stj mod ¢) mod p
JjElé2]

So correct decryption would have to satisfy

p-d-t-onTry - (261 - v+ 1/2)(1 +2°°) < [q/2]

@ NTNU | ccnrecmons 36

Parameters

Parameter Explanation Value
A Computational security parameter 128
d Ring dimension 2048
q Ciphertext and commitment modulus ~ 299
sec Statistical security parameter 40
P Plaintext modulus 2
t KeyGen rejection parameter 1.058
v Infinity norm of encryption randomness 1
Bcom Infinity norm of commitment randomness 1
1,69 Number of shuffle and decryption servers 4
ONTRU Standard deviation for encryption secret key | 7.12

@ NTNU | cacnremons

37

Our Implementation

Build upon
https://github.com/dfaranha/lattice-voting-ctrsa2l and

https://github.com/dfaranha/lattice-verifiable-mixnet
by Diego Aranha

@ NTNU | sy

38

https://github.com/dfaranha/lattice-voting-ctrsa21
https://github.com/dfaranha/lattice-verifiable-mixnet

Size Comparison

Scheme

¢i | [BHqll | 7shuf | TLin | TSmall | TBnd
[7TTKB] | 80 | 807120 | 150 | 35 | 20 2
Our [KB] 15 30 63 18 22 22

Table 3: Ciphertext, commitment, and proof sizes per
voter. Note that the two sizes in [7] reflect commitments
to noise-drowning terms and ciphertexts, respectively.

@ NTNU | sy

39

Timing Comparison

Scheme | Com | Open | Enc | Dec | DDec
045 | 2.76 | 0.74 | 0.64 | 1.56
0.20 | 0.21 | 0.45

[7] [ms
Our [ms| | 0.17 | 0.80

Table 4: Ciphertext and commitment timings. Numbers
were obtained averaging over 10* executions measured
using the cycle counter available on the platform.

Norwegian University of

g NTNU ‘ Science and Technology

40

@ NTNU | sanctamirecnon

Questions?

ity of
logy

41

	Introduction
	NTRU
	E-Voting
	Results

