
PRIO: PRIVATE, ROBUST, AND SCALABLE
COMPUTATION OF AGGREGATE

STATISTICS

Authors: Henry Corrigan-Gibbs and Dan
Boneh

Presented by: Caroline Sandsbråten

December 7, 2023

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

2

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

3

Key Contributions

▶ Introduction of Secret-Shared Non-Interactive Proofs
(SNIPs).

▶ Presentation of affine-aggregatable encodings, unifying
many data-encoding techniques for private aggregation.

▶ Demonstration of combining these encodings with
SNIPs to ensure robustness and privacy in large-scale
data collection.

4

Key Contributions

▶ Introduction of Secret-Shared Non-Interactive Proofs
(SNIPs).

▶ Presentation of affine-aggregatable encodings, unifying
many data-encoding techniques for private aggregation.

▶ Demonstration of combining these encodings with
SNIPs to ensure robustness and privacy in large-scale
data collection.

4

Key Contributions

▶ Introduction of Secret-Shared Non-Interactive Proofs
(SNIPs).

▶ Presentation of affine-aggregatable encodings, unifying
many data-encoding techniques for private aggregation.

▶ Demonstration of combining these encodings with
SNIPs to ensure robustness and privacy in large-scale
data collection.

4

Key Contributions

▶ Introduction of Secret-Shared Non-Interactive Proofs
(SNIPs).

▶ Presentation of affine-aggregatable encodings, unifying
many data-encoding techniques for private aggregation.

▶ Demonstration of combining these encodings with
SNIPs to ensure robustness and privacy in large-scale
data collection.

4

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

5

The Problem

▶ Collecting aggregate statistics pose privacy risks

▶ This collection are vulnerable to data manipulation by
malicious clients

6

The Problem

▶ Collecting aggregate statistics pose privacy risks

▶ This collection are vulnerable to data manipulation by
malicious clients

6

The Problem

▶ Collecting aggregate statistics pose privacy risks

▶ This collection are vulnerable to data manipulation by
malicious clients

6

The Problem

▶ Collecting aggregate statistics pose privacy risks

▶ This collection are vulnerable to data manipulation by
malicious clients

6

Prio’s Solution

Overview

▶ Manages to achieve: privacy and robustness against
faulty and malicious clients

▶ Prio is also scalable

▶ Achieves this with the use of a novel technique:
secret-shared non-interactive proofs (SNIPs)

7

Prio’s Solution

Overview
▶ Manages to achieve: privacy and robustness against

faulty and malicious clients

▶ Prio is also scalable

▶ Achieves this with the use of a novel technique:
secret-shared non-interactive proofs (SNIPs)

7

Prio’s Solution

Overview
▶ Manages to achieve: privacy and robustness against

faulty and malicious clients

▶ Prio is also scalable

▶ Achieves this with the use of a novel technique:
secret-shared non-interactive proofs (SNIPs)

7

Prio’s Solution

Overview
▶ Manages to achieve: privacy and robustness against

faulty and malicious clients

▶ Prio is also scalable

▶ Achieves this with the use of a novel technique:
secret-shared non-interactive proofs (SNIPs)

7

Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8

Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8

Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8

Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8

Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8

Efficiency of Prio

▶ Prio has a minimal slowdown compared to non-private
systems

▶ It also has a significant performance advantage over
systems using conventional ZK approaches

9

Efficiency of Prio

▶ Prio has a minimal slowdown compared to non-private
systems

▶ It also has a significant performance advantage over
systems using conventional ZK approaches

9

Efficiency of Prio

▶ Prio has a minimal slowdown compared to non-private
systems

▶ It also has a significant performance advantage over
systems using conventional ZK approaches

9

Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:
▶ Client: 26ms computation
▶ Servers: 2ms computation per submission

10

Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:
▶ Client: 26ms computation
▶ Servers: 2ms computation per submission

10

Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:

▶ Client: 26ms computation
▶ Servers: 2ms computation per submission

10

Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:
▶ Client: 26ms computation

▶ Servers: 2ms computation per submission

10

Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:
▶ Client: 26ms computation
▶ Servers: 2ms computation per submission

10

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

11

What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12

What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12

What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12

This sounds very similar to NIZKs

So what is the difference?

▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.

13

This sounds very similar to NIZKs

So what is the difference?

▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.

13

This sounds very similar to NIZKs

So what is the difference?
▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.

13

This sounds very similar to NIZKs

So what is the difference?
▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.

13

This sounds very similar to NIZKs

So what is the difference?
▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.

13

SNIPs in Prio (simplified)

14

SNIPs in Prio (simplified)

Setup

▶ LetM be the number of multiplication gates for the
circuit V alid

▶ 2M << |F|

14

SNIPs in Prio (simplified)

Setup
▶ LetM be the number of multiplication gates for the

circuit V alid

▶ 2M << |F|

14

SNIPs in Prio (simplified)

Setup
▶ LetM be the number of multiplication gates for the

circuit V alid

▶ 2M << |F|

14

SNIPs in Prio (simplified)

Setup
▶ LetM be the number of multiplication gates for the

circuit V alid

▶ 2M << |F|

Client Evaluation

▶ Client evaluates V alid(x) on input x to know the value
of every wire in the circuit

▶ Client uses wires to construct polynomials f, g, h which
encodes values on input and output wires of theM
gates.

14

SNIPs in Prio (simplified)

Setup
▶ LetM be the number of multiplication gates for the

circuit V alid

▶ 2M << |F|

Client Evaluation
▶ Client evaluates V alid(x) on input x to know the value

of every wire in the circuit

▶ Client uses wires to construct polynomials f, g, h which
encodes values on input and output wires of theM
gates.

14

SNIPs in Prio (simplified)

Setup
▶ LetM be the number of multiplication gates for the

circuit V alid

▶ 2M << |F|

Client Evaluation
▶ Client evaluates V alid(x) on input x to know the value

of every wire in the circuit
▶ Client uses wires to construct polynomials f, g, h which

encodes values on input and output wires of theM
gates.

14

SNIPs in Prio (simplified)

Polynomial Construction

▶ Let ut, vt be the input wires for the t-th multiplication
gate

▶ define f, g as the lowest degree possible polynomials
s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate

▶ define f, g as the lowest degree possible polynomials
s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g

▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1, deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1, deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14

SNIPs in Prio (simplified)

Client’s Computation

▶ Polynomial interpolation and multiplication to compute
V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14

SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14

SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14

SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Each server holds share xi and hi.

▶ Assume a malicious client sends ĥ s.t. for some
t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Each server holds share xi and hi.
▶ From this, the servers produce shares fi, gi without

communicating with each other.

▶ Assume a malicious client sends ĥ s.t. for some
t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)
Consistency Checking
▶ Each server holds share xi and hi.
▶ From this, the servers produce shares fi, gi without

communicating with each other.
▶ If clients and servers all act honestly, then correctness is

obvious

▶ Assume a malicious client sends ĥ s.t. for some
t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Assume a malicious client sends ĥ s.t. for some

t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Assume a malicious client sends ĥ s.t. for some

t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Assume a malicious client sends ĥ s.t. for some

t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ

▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then
ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Consistency Checking
▶ Assume a malicious client sends ĥ s.t. for some

t ∈ [M], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)

14

SNIPs in Prio (simplified)

Polynomial Identity Test

▶ The servers to check whether f · g = h holds by
executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Polynomial Identity Test
▶ The servers to check whether f · g = h holds by

executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Polynomial Identity Test
▶ The servers to check whether f · g = h holds by

executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Polynomial Identity Test
▶ The servers to check whether f · g = h holds by

executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F

▶ Each server evaluates their share by calculating
σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Polynomial Identity Test
▶ The servers to check whether f · g = h holds by

executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Polynomial Identity Test
▶ The servers to check whether f · g = h holds by

executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject

14

SNIPs in Prio (simplified)

Multiplication of Shares

▶ Without leaking information to each other, multiply
fi · gi’s

▶ From a trusted dealer, each server receives
one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Multiplication of Shares
▶ Without leaking information to each other, multiply

fi · gi’s

▶ From a trusted dealer, each server receives
one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Multiplication of Shares
▶ Without leaking information to each other, multiply

fi · gi’s
▶ From a trusted dealer, each server receives

one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Multiplication of Shares
▶ Without leaking information to each other, multiply

fi · gi’s
▶ From a trusted dealer, each server receives

one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Multiplication of Shares
▶ Without leaking information to each other, multiply

fi · gi’s
▶ From a trusted dealer, each server receives

one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Multiplication of Shares
▶ Without leaking information to each other, multiply

fi · gi’s
▶ From a trusted dealer, each server receives

one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol

▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.

▶ Servers wants to compute C(x) for some arithmetic
circuit C.

▶ For each step, the servers wants to compute f · g, each
holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.

▶ For each step, the servers wants to compute f · g, each
holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:

▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last
multiplication gate of the circuit C.

▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.

▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei

▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beavers MPC Protocol
▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
▶ di = fi(τ)− ai, ei = gi(τ)− bi where τ is the last

multiplication gate of the circuit C.
▶ Each server broadcasts di, ei
▶ Each server calculates ρi = de/s+ dbi + eai + ci.

14

SNIPs in Prio (simplified)

Beaver MPC Protocol Correctness

∑
i

ρi =
∑
i

(de/s+ dbi + eai + ci)

= de+ db+ ea+ c

= (f(τ)− a)(g(τ)− b) + (f(τ)− a)b+ (g(τ)− b)a+ c

= f(τ)g(τ)− ag(τ) + ag(τ)− ab+ c

= f(τ)g(τ)− ab+ c

= f(τ)g(τ) = h(τ)

14

SNIPs in Prio (simplified)

Output Verification

▶ Servers publish output shares after the circuit

▶ Sum up shares to confirm V alid(x) = 1

14

SNIPs in Prio (simplified)

Output Verification
▶ Servers publish output shares after the circuit

▶ Sum up shares to confirm V alid(x) = 1

14

SNIPs in Prio (simplified)

Output Verification
▶ Servers publish output shares after the circuit

▶ Sum up shares to confirm V alid(x) = 1

14

SNIPs in Prio (simplified)
Security

▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Security
▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Security
▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Security
▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Security
▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Security
▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.

14

SNIPs in Prio (simplified)
Efficiency

▶ Server-to-server communication cost grows neither
with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.

14

SNIPs in Prio (simplified)
Efficiency
▶ Server-to-server communication cost grows neither

with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.

14

SNIPs in Prio (simplified)
Efficiency
▶ Server-to-server communication cost grows neither

with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.

14

SNIPs in Prio (simplified)
Efficiency
▶ Server-to-server communication cost grows neither

with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.

14

SNIPs in Prio (simplified)
Efficiency
▶ Server-to-server communication cost grows neither

with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.

14

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

15

Simple Prio

16

Simple Prio

Setup

▶ Each client holds a one-bit integer xi.

▶ The servers wants to compute
∑

i xi.

▶ We have s servers.

16

Simple Prio

Setup
▶ Each client holds a one-bit integer xi.

▶ The servers wants to compute
∑

i xi.

▶ We have s servers.

16

Simple Prio

Setup
▶ Each client holds a one-bit integer xi.

▶ The servers wants to compute
∑

i xi.

▶ We have s servers.

16

Simple Prio

Setup
▶ Each client holds a one-bit integer xi.

▶ The servers wants to compute
∑

i xi.

▶ We have s servers.

16

Simple Prio

Upload

▶ Each client i splits its private value xi into s shares

▶ Then sends this share [xi]j , j ∈ [s] to each
corresponding server j.

16

Simple Prio

Upload
▶ Each client i splits its private value xi into s shares

▶ Then sends this share [xi]j , j ∈ [s] to each
corresponding server j.

16

Simple Prio

Upload
▶ Each client i splits its private value xi into s shares

▶ Then sends this share [xi]j , j ∈ [s] to each
corresponding server j.

16

Simple Prio

Aggregate

▶ Each server j holds an accumulator value Aj ∈ Fp

▶ And updates this Aj ← Aj + [xi]j ∈ Fp each time it
receives a new value.

16

Simple Prio

Aggregate
▶ Each server j holds an accumulator value Aj ∈ Fp

▶ And updates this Aj ← Aj + [xi]j ∈ Fp each time it
receives a new value.

16

Simple Prio

Aggregate
▶ Each server j holds an accumulator value Aj ∈ Fp

▶ And updates this Aj ← Aj + [xi]j ∈ Fp each time it
receives a new value.

16

Simple Prio

Publish

▶ Once the servers have received all clients shares, they
publish Aj .

▶ Computing
∑

j Aj ∈ Fp yields
∑

i xi.

16

Simple Prio

Publish
▶ Once the servers have received all clients shares, they

publish Aj .

▶ Computing
∑

j Aj ∈ Fp yields
∑

i xi.

16

Simple Prio

Publish
▶ Once the servers have received all clients shares, they

publish Aj .

▶ Computing
∑

j Aj ∈ Fp yields
∑

i xi.

16

Affine-Aggregatable Encodings (AFEs)

17

Affine-Aggregatable Encodings (AFEs)

Our Setting

▶ Each client i holds a value xi ∈ D, where D is some set
of data values.

▶ The servers holds an aggregation function f : Dn → A.

▶ The servers goal is to evaluate f(x1, . . . , xn) without
learning xi∀i.

17

Affine-Aggregatable Encodings (AFEs)

Our Setting
▶ Each client i holds a value xi ∈ D, where D is some set

of data values.

▶ The servers holds an aggregation function f : Dn → A.

▶ The servers goal is to evaluate f(x1, . . . , xn) without
learning xi∀i.

17

Affine-Aggregatable Encodings (AFEs)

Our Setting
▶ Each client i holds a value xi ∈ D, where D is some set

of data values.

▶ The servers holds an aggregation function f : Dn → A.

▶ The servers goal is to evaluate f(x1, . . . , xn) without
learning xi∀i.

17

Affine-Aggregatable Encodings (AFEs)

Our Setting
▶ Each client i holds a value xi ∈ D, where D is some set

of data values.

▶ The servers holds an aggregation function f : Dn → A.

▶ The servers goal is to evaluate f(x1, . . . , xn) without
learning xi∀i.

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?

▶ Gives an efficient way to encode data values xi s.t. it is
possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?
▶ Gives an efficient way to encode data values xi s.t. it is

possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?
▶ Gives an efficient way to encode data values xi s.t. it is

possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?
▶ Gives an efficient way to encode data values xi s.t. it is

possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?
▶ Gives an efficient way to encode data values xi s.t. it is

possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Affine-Aggregatable Encodings (AFEs)
What do AFEs do?
▶ Gives an efficient way to encode data values xi s.t. it is

possible to compute f(x1, . . . , xn) given only the sum of
the encodings of x1, . . . , xn.

▶ An AFE have 3 (efficient) algorithms:

▶ Encode(x): maps an input x ∈ D to its encoding in Fk

▶ Valid(y): returns true iff y ∈ Fk is a valid encoding of
some data item in D.

▶ Decode(σ): Takes σ =
∑n

i=1 Trunck′(Encode(xi)) ∈ Fk and
outputs f(x1, . . . , xn)

17

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

18

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

19

Small Fun Facts

20

Small Fun Facts

Implementation

▶ The prototype is only 5700 lines of Go and 620 lines of C
(for FLINT)

▶ Code is available on
https://crypto.stanford.edu/prio/.

20

https://crypto.stanford.edu/prio/

Small Fun Facts

Implementation
▶ The prototype is only 5700 lines of Go and 620 lines of C

(for FLINT)

▶ Code is available on
https://crypto.stanford.edu/prio/.

20

https://crypto.stanford.edu/prio/

Small Fun Facts

Implementation
▶ The prototype is only 5700 lines of Go and 620 lines of C

(for FLINT)

▶ Code is available on
https://crypto.stanford.edu/prio/.

20

https://crypto.stanford.edu/prio/

Questions?

21

	Key Contributions
	Introduction and Motivation
	Secret-Shared Non-Interactive Proofs (SNIPs)
	Prio
	More Building Blocks!
	Fun Facts

