□ NTNU | Norwegian University of Science and Technology

PRIO: PRIVATE, ROBUST, AND SCALABLE COMPUTATION OF AGGREGATE STATISTICS

Authors: Henry Corrigan-Gibbs and Dan Boneh

Presented by: Caroline Sandsbråten

December 7, 2023

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

 Introduction of Secret-Shared Non-Interactive Proofs (SNIPs).

 Introduction of Secret-Shared Non-Interactive Proofs (SNIPs).

Presentation of affine-aggregatable encodings, unifying many data-encoding techniques for private aggregation.

- Introduction of Secret-Shared Non-Interactive Proofs (SNIPs).
- Presentation of affine-aggregatable encodings, unifying many data-encoding techniques for private aggregation.
- Demonstration of combining these encodings with SNIPs to ensure robustness and privacy in large-scale data collection.

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

Collecting aggregate statistics pose privacy risks

- Collecting aggregate statistics pose privacy risks
- This collection are vulnerable to data manipulation by malicious clients

- Collecting aggregate statistics pose privacy risks
- This collection are vulnerable to data manipulation by malicious clients

Overview

Overview

 Manages to achieve: privacy and robustness against faulty and malicious clients

Overview

 Manages to achieve: privacy and robustness against faulty and malicious clients

Prio is also scalable

Overview

- Manages to achieve: privacy and robustness against faulty and malicious clients
- Prio is also scalable
- Achieves this with the use of a novel technique: secret-shared non-interactive proofs (SNIPs)

Machine Learning

Machine Learning

Health/fitness tracking

- Machine Learning
- Health/fitness tracking
- Web browsing data collection

- Machine Learning
- Health/fitness tracking
- Web browsing data collection
- Essentially in every scenario where aggregate data is valuable, but user privacy is just as important

 Prio has a minimal slowdown compared to non-private systems

- Prio has a minimal slowdown compared to non-private systems
- It also has a significant performance advantage over systems using conventional ZK approaches

Comparison

Туре	Prio	Prio (non-robust)	NIZK
Client-side cost	50x slowdown	N/A	50-100x vs. (compared to Prio)
Server-side cost	1-2x slowdown	5-15x slowdown	267x slowdown
Overall system	5.7x slowdown	N/A	N/A

Comparison

Туре	Prio	Prio (non-robust)	NIZK
Client-side cost	50x slowdown	N/A	50-100x vs. (compared to Prio)
Server-side cost	1-2x slowdown	5-15x slowdown	267x slowdown
Overall system	5.7x slowdown	N/A	N/A

Experiment

Case: Privately collect responses to a survey with 434 true/false questions.

Comparison

Туре	Prio	Prio (non-robust)	NIZK
Client-side cost	50x slowdown	N/A	50-100x vs. (compared to Prio)
Server-side cost	1-2x slowdown	5-15x slowdown	267x slowdown
Overall system	5.7x slowdown	N/A	N/A

Experiment

Case: Privately collect responses to a survey with 434 true/false questions.

Results:

Comparison

Туре	Prio	Prio (non-robust)	NIZK
Client-side cost	50x slowdown	N/A	50-100x vs. (compared to Prio)
Server-side cost	1-2x slowdown	5-15x slowdown	267x slowdown
Overall system	5.7x slowdown	N/A	N/A

Experiment

Case: Privately collect responses to a survey with 434 true/false questions.

Results:

Client: 26ms computation

Comparison

Туре	Prio	Prio (non-robust)	NIZK
Client-side cost	50x slowdown	N/A	50-100x vs. (compared to Prio)
Server-side cost	1-2x slowdown	5-15x slowdown	267x slowdown
Overall system	5.7x slowdown	N/A	N/A

Experiment

Case: Privately collect responses to a survey with 434 true/false questions.

Results:

- Client: 26ms computation
- Servers: 2ms computation per submission

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

What are SNIPs?

What are SNIPs?

 Cryptographic tools that allow a client to prove to a set of servers that a submitted value is correct and within expected parameters, without revealing the actual value.

What are SNIPs?

- Cryptographic tools that allow a client to prove to a set of servers that a submitted value is correct and within expected parameters, without revealing the actual value.
- Designed to work in a distributed setting where multiple servers collaboratively verify the correctness of client submissions.

This sounds very similar to NIZKs

This sounds very similar to NIZKs

So what is the difference?

This sounds very similar to NIZKs

So what is the difference?

SNIPs are tailored for efficiency in client/server settings.

This sounds very similar to NIZKs

So what is the difference?

- SNIPs are tailored for efficiency in client/server settings.
- SNIPs are specifically designed for data aggregation settings, while NIZKs have a broader range of applications.

This sounds very similar to NIZKs

So what is the difference?

- SNIPs are tailored for efficiency in client/server settings.
- SNIPs are specifically designed for data aggregation settings, while NIZKs have a broader range of applications.
- SNIPs generally use a combination of polynomial identity tests and secret sharing, and are usually focused on information theoretic security.

Setup

Setup

 Let *M* be the number of multiplication gates for the circuit *Valid*

Setup

- Let M be the number of multiplication gates for the circuit Valid
- $\blacktriangleright \ 2M << |\mathbb{F}|$

Setup

- Let M be the number of multiplication gates for the circuit Valid
- $\blacktriangleright \ 2M << |\mathbb{F}|$

Client Evaluation

Setup

- Let M be the number of multiplication gates for the circuit Valid
- $\blacktriangleright 2M << |\mathbb{F}|$

Client Evaluation

 Client evaluates Valid(x) on input x to know the value of every wire in the circuit

Setup

- Let M be the number of multiplication gates for the circuit Valid
- $\blacktriangleright 2M << |\mathbb{F}|$

Client Evaluation

- Client evaluates Valid(x) on input x to know the value of every wire in the circuit
- Client uses wires to construct polynomials f, g, h which encodes values on input and output wires of the M gates.

Polynomial Construction

• Let u_t, v_t be the input wires for the *t*-th multiplication gate

- Let u_t, v_t be the input wires for the *t*-th multiplication gate
- ▶ define f, g as the lowest degree possible polynomials s.t. f(t) = ut, g(t) = vt

- Let u_t, v_t be the input wires for the *t*-th multiplication gate
- ▶ define f, g as the lowest degree possible polynomials
 s.t. f(t) = ut, g(t) = vt
- Define $h = f \cdot g$

- Let u_t, v_t be the input wires for the *t*-th multiplication gate
- ▶ define f, g as the lowest degree possible polynomials s.t. f(t) = ut, g(t) = vt
- Define $h = f \cdot g$
- ▶ Then $\deg(f) \le M 1, \deg(f) \le M 1, \deg(h) \le 2M 2$

- Let u_t, v_t be the input wires for the *t*-th multiplication gate
- ▶ define f, g as the lowest degree possible polynomials s.t. f(t) = ut, g(t) = vt
- Define $h = f \cdot g$
- ▶ Then $\deg(f) \le M 1, \deg(f) \le M 1, \deg(h) \le 2M 2$
- Since $h(t) = f(t) \cdot g(t)$, then h(t) equals the output wire of the *t*-th gate.

Client's Computation

Client's Computation

 Polynomial interpolation and multiplication to compute Valid(x)

Client's Computation

- Polynomial interpolation and multiplication to compute Valid(x)
- The client then splits the coefficients of h in s parts and sends the i-th share to the i-th server

Client's Computation

- Polynomial interpolation and multiplication to compute Valid(x)
- The client then splits the coefficients of h in s parts and sends the *i*-th share to the *i*-th server
- This way, only one honest server is needed to achieve information theoretic security (they each also only get x_i)

Consistency Checking

• Each server holds share x_i and h_i .

- Each server holds share x_i and h_i .
- ► From this, the servers produce shares *f*_{*i*}, *g*_{*i*} without communicating with each other.

- Each server holds share x_i and h_i .
- ► From this, the servers produce shares *f*_{*i*}, *g*_{*i*} without communicating with each other.
- If clients and servers all act honestly, then correctness is obvious

Consistency Checking

Assume a malicious client sends \hat{h} s.t. for some $t \in [M], \hat{h}(t) \neq h(t)$

- Assume a malicious client sends \hat{h} s.t. for some $t \in [M], \hat{h}(t) \neq h(t)$
- ► Then the servers reconstructs shares of \hat{f}, \hat{g} that might not equal f, g.

- Assume a malicious client sends \hat{h} s.t. for some $t \in [M], \hat{h}(t) \neq h(t)$
- ► Then the servers reconstructs shares of \hat{f}, \hat{g} that might not equal f, g.
- Then, with certainty: $\hat{h} \neq \hat{f} \cdot \hat{g}$

- Assume a malicious client sends \hat{h} s.t. for some $t \in [M], \hat{h}(t) \neq h(t)$
- ► Then the servers reconstructs shares of \hat{f}, \hat{g} that might not equal f, g.
- Then, with certainty: $\hat{h} \neq \hat{f} \cdot \hat{g}$
- Since $\hat{h}(t_0) \neq h(t_0) = f(t_0) \cdot g(t_0) = \hat{f}(t_0) \cdot \hat{g}(t_0)$, then $\hat{h} \neq \hat{f} \cdot \hat{g}$ for the least t_0 s.t. $\hat{h}(t_0) \neq h(t_0)$

Polynomial Identity Test

The servers to check whether f · g = h holds by executing the Schwartz-Zippel randomized polynomial identity test. The principle of this test is:

- The servers to check whether f · g = h holds by executing the Schwartz-Zippel randomized polynomial identity test. The principle of this test is:
- ▶ If $f \cdot g \neq h$ then $f \cdot g h$ is a non-zero polynomial with $\deg \leq 2M 2$.

- The servers to check whether f · g = h holds by executing the Schwartz-Zippel randomized polynomial identity test. The principle of this test is:
- ▶ If $f \cdot g \neq h$ then $f \cdot g h$ is a non-zero polynomial with $\deg \leq 2M 2$.
- One server chose a random $r \in \mathbb{F}$

- The servers to check whether f · g = h holds by executing the Schwartz-Zippel randomized polynomial identity test. The principle of this test is:
- ▶ If $f \cdot g \neq h$ then $f \cdot g h$ is a non-zero polynomial with $\deg \leq 2M 2$.
- One server chose a random $r \in \mathbb{F}$
- Each server evaluates their share by calculating $\sigma_i = f_i(r) \cdot g_i(r) h_i(r)$

- The servers to check whether f · g = h holds by executing the Schwartz-Zippel randomized polynomial identity test. The principle of this test is:
- ▶ If $f \cdot g \neq h$ then $f \cdot g h$ is a non-zero polynomial with $\deg \leq 2M 2$.
- One server chose a random $r \in \mathbb{F}$
- Each server evaluates their share by calculating $\sigma_i = f_i(r) \cdot g_i(r) h_i(r)$
- Servers publish σ_i and ensure $\sum_i \sigma_i = 0$, if not reject

Multiplication of Shares

Multiplication of Shares

• Without leaking information to each other, multiply $f_i \cdot g_i$'s

Multiplication of Shares

- Without leaking information to each other, multiply $f_i \cdot g_i$'s
- ▶ From a trusted dealer, each server receives one-time-use shares $(a_i, b_i, c_i) \in \mathbb{F}^3$ s.t. $a \cdot b = c \in \mathbb{F}$, then using the Beaver MPC multiplication protocol.

Multiplication of Shares

- Without leaking information to each other, multiply $f_i \cdot g_i$'s
- From a trusted dealer, each server receives one-time-use shares $(a_i, b_i, c_i) \in \mathbb{F}^3$ s.t. $a \cdot b = c \in \mathbb{F}$, then using the Beaver MPC multiplication protocol.
- This is fast (each server needs to broadcast a single message).

Multiplication of Shares

- Without leaking information to each other, multiply $f_i \cdot g_i$'s
- From a trusted dealer, each server receives one-time-use shares $(a_i, b_i, c_i) \in \mathbb{F}^3$ s.t. $a \cdot b = c \in \mathbb{F}$, then using the Beaver MPC multiplication protocol.
- This is fast (each server needs to broadcast a single message).
- In this setting, the client generates a, b, c and splits into shares a_i, b_i, c_i for each of the servers.

Multiplication of Shares

- Without leaking information to each other, multiply $f_i \cdot g_i$'s
- ▶ From a trusted dealer, each server receives one-time-use shares $(a_i, b_i, c_i) \in \mathbb{F}^3$ s.t. $a \cdot b = c \in \mathbb{F}$, then using the Beaver MPC multiplication protocol.
- This is fast (each server needs to broadcast a single message).
- In this setting, the client generates a, b, c and splits into shares a_i, b_i, c_i for each of the servers.
- This saves computation time/resources.

Beavers MPC Protocol

• Each server holds share x_i of input vector x.

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.
- For each step, the servers wants to compute $f \cdot g$, each holding f_i, g_i

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.
- For each step, the servers wants to compute $f \cdot g$, each holding f_i, g_i
- Using the triples (a_i, b_i, c_i) and f_i, g_i , to compute:

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.
- For each step, the servers wants to compute $f \cdot g$, each holding f_i, g_i
- Using the triples (a_i, b_i, c_i) and f_i, g_i , to compute:
- $d_i = f_i(\tau) a_i, e_i = g_i(\tau) b_i$ where τ is the last multiplication gate of the circuit *C*.

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.
- For each step, the servers wants to compute $f \cdot g$, each holding f_i, g_i
- Using the triples (a_i, b_i, c_i) and f_i, g_i , to compute:
- $d_i = f_i(\tau) a_i, e_i = g_i(\tau) b_i$ where τ is the last multiplication gate of the circuit *C*.
- Each server broadcasts d_i, e_i

- Each server holds share x_i of input vector x.
- Servers wants to compute C(x) for some arithmetic circuit C.
- For each step, the servers wants to compute $f \cdot g$, each holding f_i, g_i
- Using the triples (a_i, b_i, c_i) and f_i, g_i , to compute:
- $d_i = f_i(\tau) a_i, e_i = g_i(\tau) b_i$ where τ is the last multiplication gate of the circuit *C*.
- Each server broadcasts d_i, e_i
- Each server calculates $\rho_i = de/s + db_i + ea_i + c_i$.

Beaver MPC Protocol Correctness

$$\sum_{i} \rho_{i} = \sum_{i} (de/s + db_{i} + ea_{i} + c_{i})$$

= $de + db + ea + c$
= $(f(\tau) - a)(g(\tau) - b) + (f(\tau) - a)b + (g(\tau) - b)a + c$
= $f(\tau)g(\tau) - ag(\tau) + ag(\tau) - ab + c$
= $f(\tau)g(\tau) - ab + c$
= $f(\tau)g(\tau)$ = $h(\tau)$

Output Verification

Output Verification

Servers publish output shares after the circuit

Output Verification

- Servers publish output shares after the circuit
- Sum up shares to confirm Valid(x) = 1

Security

Correctness follows construction.

- Correctness follows construction.
- A malicious client must cheat the polynomial identity test with probability $(2M 2)/|\mathbb{F}|$.

- Correctness follows construction.
- A malicious client must cheat the polynomial identity test with probability $(2M 2)/|\mathbb{F}|$.
- Completeness nor soundness holds in the presence of malicious servers.

- Correctness follows construction.
- A malicious client must cheat the polynomial identity test with probability $(2M 2)/|\mathbb{F}|$.
- Completeness nor soundness holds in the presence of malicious servers.
- Malicious servers can mount selective DoS attacks against clients

- Correctness follows construction.
- A malicious client must cheat the polynomial identity test with probability $(2M 2)/|\mathbb{F}|$.
- Completeness nor soundness holds in the presence of malicious servers.
- Malicious servers can mount selective DoS attacks against clients
- As long as at least one server is honest, dishonest servers learn nothing about the clients data.

Efficiency

Server-to-server communication cost grows neither with complexity of the verification circuit nor with the size of x.

- Server-to-server communication cost grows neither with complexity of the verification circuit nor with the size of x.
- Computation cost for each server is not much more than to evaluate the *Valid* circuit.

- Server-to-server communication cost grows neither with complexity of the verification circuit nor with the size of x.
- Computation cost for each server is not much more than to evaluate the *Valid* circuit.
- Client-to-server communication cost grows linearly with the size of the *Valid* circuit.

- Server-to-server communication cost grows neither with complexity of the verification circuit nor with the size of x.
- Computation cost for each server is not much more than to evaluate the *Valid* circuit.
- Client-to-server communication cost grows linearly with the size of the *Valid* circuit.
- The authors note an interesting challenge to try to reduce the communication cost without needing expensive asymm. cryptography.

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

Setup

Setup

Each client holds a one-bit integer x_i .

Setup

• Each client holds a one-bit integer x_i .

• The servers wants to compute $\sum_i x_i$.

Setup

• Each client holds a one-bit integer x_i .

• The servers wants to compute $\sum_i x_i$.

We have s servers.

Upload

Upload

Each client *i* splits its private value x_i into *s* shares

Upload

- Each client *i* splits its private value x_i into *s* shares
- ▶ Then sends this share $[x_i]_j$, $j \in [s]$ to each corresponding server j.

Aggregate

Aggregate

Each server *j* holds an accumulator value $A_j \in \mathbb{F}_p$

Aggregate

- Each server j holds an accumulator value $A_j \in \mathbb{F}_p$
- ▶ And updates this $A_j \leftarrow A_j + [x_i]_j \in \mathbb{F}_p$ each time it receives a new value.

Publish

Publish

Once the servers have received all clients shares, they publish A_j.

Publish

- Once the servers have received all clients shares, they publish A_j.
- Computing $\sum_j A_j \in \mathbb{F}_p$ yields $\sum_i x_i$.

Our Setting

Our Setting

Each client *i* holds a value $x_i \in D$, where *D* is some set of data values.

Our Setting

- Each client *i* holds a value $x_i \in D$, where *D* is some set of data values.
- The servers holds an aggregation function $f: D^n \to A$.

Our Setting

- Each client *i* holds a value $x_i \in D$, where *D* is some set of data values.
- The servers holds an aggregation function $f: D^n \to A$.
- The servers goal is to evaluate $f(x_1, \ldots, x_n)$ without learning $x_i \forall i$.

What do AFEs do?

► Gives an efficient way to encode data values x_i s.t. it is possible to compute f(x₁,...,x_n) given only the sum of the encodings of x₁,...,x_n.

- ► Gives an efficient way to encode data values x_i s.t. it is possible to compute f(x₁,...,x_n) given only the sum of the encodings of x₁,...,x_n.
- An AFE have 3 (efficient) algorithms:

- ► Gives an efficient way to encode data values x_i s.t. it is possible to compute f(x₁,..., x_n) given only the sum of the encodings of x₁,..., x_n.
- An AFE have 3 (efficient) algorithms:
- Encode(x): maps an input $x \in D$ to its encoding in \mathbb{F}^k

- ► Gives an efficient way to encode data values x_i s.t. it is possible to compute f(x₁,..., x_n) given only the sum of the encodings of x₁,..., x_n.
- An AFE have 3 (efficient) algorithms:
- Encode(x): maps an input $x \in D$ to its encoding in \mathbb{F}^k
- ▶ Valid(y): returns true iff $y \in \mathbb{F}^k$ is a valid encoding of some data item in D.

- ► Gives an efficient way to encode data values x_i s.t. it is possible to compute f(x₁,..., x_n) given only the sum of the encodings of x₁,..., x_n.
- An AFE have 3 (efficient) algorithms:
- Encode(x): maps an input $x \in D$ to its encoding in \mathbb{F}^k
- ▶ Valid(y): returns true iff $y \in \mathbb{F}^k$ is a valid encoding of some data item in D.
- Decode(σ): Takes $\sigma = \sum_{i=1}^{n} Trunc_{k'}(\mathsf{Encode}(x_i)) \in \mathbb{F}^k$ and outputs $f(x_1, \ldots, x_n)$

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

Contents

Key Contributions

Introduction and Motivation

Secret-Shared Non-Interactive Proofs (SNIPs)

Prio

More Building Blocks!

Fun Facts

Implementation

Implementation

The prototype is only 5700 lines of Go and 620 lines of C (for FLINT)

Implementation

 The prototype is only 5700 lines of Go and 620 lines of C (for FLINT)

Code is available on https://crypto.stanford.edu/prio/.

Questions?

