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Key Contributions

▶ Introduction of Secret-Shared Non-Interactive Proofs
(SNIPs).

▶ Presentation of affine-aggregatable encodings, unifying
many data-encoding techniques for private aggregation.

▶ Demonstration of combining these encodings with
SNIPs to ensure robustness and privacy in large-scale
data collection.
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The Problem

▶ Collecting aggregate statistics pose privacy risks

▶ This collection are vulnerable to data manipulation by
malicious clients
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Prio’s Solution

Overview

▶ Manages to achieve: privacy and robustness against
faulty and malicious clients

▶ Prio is also scalable

▶ Achieves this with the use of a novel technique:
secret-shared non-interactive proofs (SNIPs)
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Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8



Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8



Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8



Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8



Applications for Prio

▶ Machine Learning

▶ Health/fitness tracking

▶ Web browsing data collection

▶ Essentially in every scenario where aggregate data is
valuable, but user privacy is just as important

8



Efficiency of Prio

▶ Prio has a minimal slowdown compared to non-private
systems

▶ It also has a significant performance advantage over
systems using conventional ZK approaches
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Efficiency of Prio
Comparison

Type Prio Prio (non-robust) NIZK
Client-side cost 50x slowdown N/A 50-100x vs. (compared to Prio)
Server-side cost 1-2x slowdown 5-15x slowdown 267x slowdown
Overall system 5.7x slowdown N/A N/A

Experiment
Case: Privately collect responses to a survey with 434
true/false questions.

Results:
▶ Client: 26ms computation
▶ Servers: 2ms computation per submission
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What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12



What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12



What are SNIPs?

▶ Cryptographic tools that allow a client to prove to a set
of servers that a submitted value is correct and within
expected parameters, without revealing the actual
value.

▶ Designed to work in a distributed setting where multiple
servers collaboratively verify the correctness of client
submissions.

12



This sounds very similar to NIZKs

So what is the difference?

▶ SNIPs are tailored for efficiency in client/server settings.

▶ SNIPs are specifically designed for data aggregation
settings, while NIZKs have a broader range of
applications.

▶ SNIPs generally use a combination of polynomial
identity tests and secret sharing, and are usualyl
focused on information theoretic security.
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SNIPs in Prio (simplified)

Polynomial Construction

▶ Let ut, vt be the input wires for the t-th multiplication
gate

▶ define f, g as the lowest degree possible polynomials
s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate

▶ define f, g as the lowest degree possible polynomials
s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g

▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1,deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1, deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Polynomial Construction
▶ Let ut, vt be the input wires for the t-th multiplication

gate
▶ define f, g as the lowest degree possible polynomials

s.t. f(t) = ut, g(t) = vt

▶ Define h = f · g
▶ Then deg(f) ≤M − 1,deg(f) ≤M − 1, deg(h) ≤ 2M − 2

▶ Since h(t) = f(t) · g(t), then h(t) equals the output wire
of the t-th gate.

14



SNIPs in Prio (simplified)

Client’s Computation

▶ Polynomial interpolation and multiplication to compute
V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14



SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14



SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14



SNIPs in Prio (simplified)

Client’s Computation
▶ Polynomial interpolation and multiplication to compute

V alid(x)

▶ The client then splits the coefficients of h in s parts and
sends the i-th share to the i-th server

▶ This way, only one honest server is needed to achieve
information theoretic security (they each also only get
xi)

14



SNIPs in Prio (simplified)

Consistency Checking
▶ Each server holds share xi and hi.

▶ Assume a malicious client sends ĥ s.t. for some
t ∈ [M ], ĥ(t) ̸= h(t)

▶ Then the servers reconstructs shares of f̂ , ĝ that might
not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
▶ Since ĥ(t0) ̸= h(t0) = f(t0) · g(t0) = f̂(t0) · ĝ(t0), then

ĥ ̸= f̂ · ĝ for the least t0 s.t. ĥ(t0) ̸= h(t0)
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not equal f, g.

▶ Then, with certainty: ĥ ̸= f̂ · ĝ
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SNIPs in Prio (simplified)

Polynomial Identity Test

▶ The servers to check whether f · g = h holds by
executing the Schwartz-Zippel randomized polynomial
identity test. The principle of this test is:

▶ If f · g ̸= h then f · g − h is a non-zero polynomial with
deg ≤ 2M − 2.

▶ One server chose a random r ∈ F
▶ Each server evaluates their share by calculating

σi = fi(r) · gi(r)− hi(r)

▶ Servers publish σi and ensure
∑

i σi = 0, if not reject
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SNIPs in Prio (simplified)

Multiplication of Shares

▶ Without leaking information to each other, multiply
fi · gi’s

▶ From a trusted dealer, each server receives
one-time-use shares (ai, bi, ci) ∈ F3 s.t. a · b = c ∈ F, then
using the Beaver MPC multiplication protocol.

▶ This is fast (each server needs to broadcast a single
message).

▶ In this setting, the client generates a, b, c and splits into
shares ai, bi, ci for each of the servers.

▶ This saves computation time/resources.
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SNIPs in Prio (simplified)

Beavers MPC Protocol

▶ Each server holds share xi of input vector x.
▶ Servers wants to compute C(x) for some arithmetic

circuit C.
▶ For each step, the servers wants to compute f · g, each

holding fi, gi

▶ Using the triples (ai, bi, ci) and fi, gi, to compute:
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multiplication gate of the circuit C.
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▶ Each server calculates ρi = de/s+ dbi + eai + ci.
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SNIPs in Prio (simplified)

Beaver MPC Protocol Correctness

∑
i

ρi =
∑
i

(de/s+ dbi + eai + ci)

= de+ db+ ea+ c

= (f(τ)− a)(g(τ)− b) + (f(τ)− a)b+ (g(τ)− b)a+ c

= f(τ)g(τ)− ag(τ) + ag(τ)− ab+ c

= f(τ)g(τ)− ab+ c

= f(τ)g(τ) = h(τ)
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Security

▶ Correctness follows construction.

▶ A malicious client must cheat the polynomial identity
test with probability (2M − 2)/|F|.

▶ Completeness nor soundness holds in the presence of
malicious servers.

▶ Malicious servers can mount selective DoS attacks
against clients

▶ As long as at least one server is honest, dishonest
servers learn nothing about the clients data.
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Efficiency

▶ Server-to-server communication cost grows neither
with complexity of the verification circuit nor with the
size of x.

▶ Computation cost for each server is not much more
than to evaluate the V alid circuit.

▶ Client-to-server communication cost grows linearly with
the size of the V alid circuit.

▶ The authors note an interesting challenge to try to
reduce the communication cost without needing
expensive asymm. cryptography.
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▶ Decode(σ): Takes σ =
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