
Lecture 2: Number Theory, Groups and Finite Fields

Lecture 2: Number Theory, Groups and
Finite Fields

TTM4135

Relates to Stallings Chapters 2 and 5

Spring Semester, 2024

1 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Motivation

▶ Cryptography makes use of mathematics, computer
science and engineering

▶ Mostly the mathematics is discrete mathematics because
cryptology deals with finite objects such as alphabets and
blocks of characters

▶ We therefore look at modular arithmetic which only deals
with a finite number of values

▶ Understanding the algebraic structure of finite objects
helps to build useful cryptographic properties

2 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Motivation

▶ Cryptography makes use of mathematics, computer
science and engineering

▶ Mostly the mathematics is discrete mathematics because
cryptology deals with finite objects such as alphabets and
blocks of characters

▶ We therefore look at modular arithmetic which only deals
with a finite number of values

▶ Understanding the algebraic structure of finite objects
helps to build useful cryptographic properties

2 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Motivation

▶ Cryptography makes use of mathematics, computer
science and engineering

▶ Mostly the mathematics is discrete mathematics because
cryptology deals with finite objects such as alphabets and
blocks of characters

▶ We therefore look at modular arithmetic which only deals
with a finite number of values

▶ Understanding the algebraic structure of finite objects
helps to build useful cryptographic properties

2 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Motivation

▶ Cryptography makes use of mathematics, computer
science and engineering

▶ Mostly the mathematics is discrete mathematics because
cryptology deals with finite objects such as alphabets and
blocks of characters

▶ We therefore look at modular arithmetic which only deals
with a finite number of values

▶ Understanding the algebraic structure of finite objects
helps to build useful cryptographic properties

2 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm
Modular arithmetic

Groups

Finite Fields

Boolean Algebra

3 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm
Modular arithmetic

Groups

Finite Fields

Boolean Algebra

4 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Factorisation

▶ Let Z denote the set of integers

▶ For a and b in Z, we say that a divides b (or a is a factor of
b, or write a|b) if there exists k in Z such that ak = b

▶ An integer p > 1 is said to be a prime number (or simply a
prime) if its only positive divisors are 1 and p

▶ We can test for prime numbers by trial division (up to the
square root of the number being tested)

▶ In a later lecture we will look at a more efficient way to
check for primality

5 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Factorisation

▶ Let Z denote the set of integers
▶ For a and b in Z, we say that a divides b (or a is a factor of

b, or write a|b) if there exists k in Z such that ak = b

▶ An integer p > 1 is said to be a prime number (or simply a
prime) if its only positive divisors are 1 and p

▶ We can test for prime numbers by trial division (up to the
square root of the number being tested)

▶ In a later lecture we will look at a more efficient way to
check for primality

5 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Factorisation

▶ Let Z denote the set of integers
▶ For a and b in Z, we say that a divides b (or a is a factor of

b, or write a|b) if there exists k in Z such that ak = b
▶ An integer p > 1 is said to be a prime number (or simply a

prime) if its only positive divisors are 1 and p

▶ We can test for prime numbers by trial division (up to the
square root of the number being tested)

▶ In a later lecture we will look at a more efficient way to
check for primality

5 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Factorisation

▶ Let Z denote the set of integers
▶ For a and b in Z, we say that a divides b (or a is a factor of

b, or write a|b) if there exists k in Z such that ak = b
▶ An integer p > 1 is said to be a prime number (or simply a

prime) if its only positive divisors are 1 and p
▶ We can test for prime numbers by trial division (up to the

square root of the number being tested)

▶ In a later lecture we will look at a more efficient way to
check for primality

5 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Factorisation

▶ Let Z denote the set of integers
▶ For a and b in Z, we say that a divides b (or a is a factor of

b, or write a|b) if there exists k in Z such that ak = b
▶ An integer p > 1 is said to be a prime number (or simply a

prime) if its only positive divisors are 1 and p
▶ We can test for prime numbers by trial division (up to the

square root of the number being tested)
▶ In a later lecture we will look at a more efficient way to

check for primality

5 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Basic Properties of Factors

1. If a divides b and a divides c, then a divides b + c

2. If p is a prime and p divides ab, then p divides a or b

Euclidean division
For a and b in Z, a > b , there exist unique q and r in Z such
that:

a = bq + r

where 0 ≤ r < b.

6 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Basic Properties of Factors

1. If a divides b and a divides c, then a divides b + c
2. If p is a prime and p divides ab, then p divides a or b

Euclidean division
For a and b in Z, a > b , there exist unique q and r in Z such
that:

a = bq + r

where 0 ≤ r < b.

6 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Primes and Factorisation

Basic Properties of Factors

1. If a divides b and a divides c, then a divides b + c
2. If p is a prime and p divides ab, then p divides a or b

Euclidean division
For a and b in Z, a > b , there exist unique q and r in Z such
that:

a = bq + r

where 0 ≤ r < b.

6 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm
Modular arithmetic

Groups

Finite Fields

Boolean Algebra

7 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written gcd(a,b) = d , if all
of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d
3. d > 0

We say that a and b are relatively prime if gcd(a,b) = 1

8 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written gcd(a,b) = d , if all
of the following hold:

1. d divides a and b

2. if c divides a and b then c divides d
3. d > 0

We say that a and b are relatively prime if gcd(a,b) = 1

8 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written gcd(a,b) = d , if all
of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d

3. d > 0

We say that a and b are relatively prime if gcd(a,b) = 1

8 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written gcd(a,b) = d , if all
of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d
3. d > 0

We say that a and b are relatively prime if gcd(a,b) = 1

8 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written gcd(a,b) = d , if all
of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d
3. d > 0

We say that a and b are relatively prime if gcd(a,b) = 1

8 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b

b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2

...
rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).

9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a,b).
Let qi be the quotient and ri be the remainder in the following.

a = bq1 + r1, for 0 < r1 < b
b = r1q2 + r2, for 0 < r2 < r1

r1 = r2q3 + r3, for 0 < r3 < r2
...

rk−2 = rk−1qk + rk , for 0 < rk < rk−1

rk−1 = rkqk+1, where rk+1 = 0

Then d = rk = gcd(a,b).
9 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b

Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)

r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;

r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;

k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;

while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end

k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end

k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;

k ← k + 1;

end

k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end

k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;

return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a,b
Result: gcd(a,b)
r−1 ← a;
r0 ← b;
k ← 0;
while rk ̸= 0 do

qk ← ⌊
rk−1

rk
⌋;

rk+1 ← rk−1 − qk rk ;
k ← k + 1;

end
k ← k − 1;
return rk

Algorithm: Euclidean algorithm

10 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)
▶ By back substitution in the Euclidean algorithm we can find

integers x and y where

ax + by = d = rk .

▶ Starting with the penultimate line in the algorithm,
rk−2 = rk−1qk + rk , we can compute

rk = rk−2 − rk−1qk .

Then we replace rk−1 in this equation from the next line up,
rk−1 = rk−3 − rk−2qk−1 to get

rk = rk−2 − (rk−3 − rk−2qk−1)qk

= rk−2(1 + qk−1qk)− rk−3qk

11 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)
▶ By back substitution in the Euclidean algorithm we can find

integers x and y where

ax + by = d = rk .

▶ Starting with the penultimate line in the algorithm,
rk−2 = rk−1qk + rk , we can compute

rk = rk−2 − rk−1qk .

Then we replace rk−1 in this equation from the next line up,
rk−1 = rk−3 − rk−2qk−1 to get

rk = rk−2 − (rk−3 − rk−2qk−1)qk

= rk−2(1 + qk−1qk)− rk−3qk

11 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)
▶ By back substitution in the Euclidean algorithm we can find

integers x and y where

ax + by = d = rk .

▶ Starting with the penultimate line in the algorithm,
rk−2 = rk−1qk + rk , we can compute

rk = rk−2 − rk−1qk .

Then we replace rk−1 in this equation from the next line up,
rk−1 = rk−3 − rk−2qk−1 to get

rk = rk−2 − (rk−3 − rk−2qk−1)qk

= rk−2(1 + qk−1qk)− rk−3qk

11 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)
▶ By back substitution in the Euclidean algorithm we can find

integers x and y where

ax + by = d = rk .

▶ Starting with the penultimate line in the algorithm,
rk−2 = rk−1qk + rk , we can compute

rk = rk−2 − rk−1qk .

Then we replace rk−1 in this equation from the next line up,
rk−1 = rk−3 − rk−2qk−1 to get

rk = rk−2 − (rk−3 − rk−2qk−1)qk

= rk−2(1 + qk−1qk)− rk−3qk

11 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

▶ Now we can use this equation to replace rk−2 from the line
before that, and continue in the same way.

▶ Finally replacing r1 by r1 = a− bq1 from the first line gives
us rk in terms of a multiple of a and a multiple of b.

▶ We will be particularly interested in the case where
rk = d = 1.

12 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

▶ Now we can use this equation to replace rk−2 from the line
before that, and continue in the same way.

▶ Finally replacing r1 by r1 = a− bq1 from the first line gives
us rk in terms of a multiple of a and a multiple of b.

▶ We will be particularly interested in the case where
rk = d = 1.

12 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

GCD and the Euclidean Algorithm

▶ Now we can use this equation to replace rk−2 from the line
before that, and continue in the same way.

▶ Finally replacing r1 by r1 = a− bq1 from the first line gives
us rk in terms of a multiple of a and a multiple of b.

▶ We will be particularly interested in the case where
rk = d = 1.

12 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Outline

Basic Number Theory
Primes and Factorisation
GCD and the Euclidean Algorithm
Modular arithmetic

Groups

Finite Fields

Boolean Algebra

13 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then
1. a + c ≡ b + d (mod n)
2. ac ≡ bd (mod n)
3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then

1. a + c ≡ b + d (mod n)
2. ac ≡ bd (mod n)
3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then
1. a + c ≡ b + d (mod n)

2. ac ≡ bd (mod n)
3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then
1. a + c ≡ b + d (mod n)
2. ac ≡ bd (mod n)

3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then
1. a + c ≡ b + d (mod n)
2. ac ≡ bd (mod n)
3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Modular arithmetic
Definition
b is a residue of a modulo n if a− b = kn for some integer k .

a ≡ b (mod n) ⇐⇒ a− b = kn.

Given a ≡ b (mod n) and c ≡ d (mod n), then
1. a + c ≡ b + d (mod n)
2. ac ≡ bd (mod n)
3. ka ≡ kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.

14 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Residue class

Definition
The set {r0, r1, . . . , rn−1} is called a complete set of residues
modulo n if, for every integer a, a ≡ ri (mod n) for exactly one ri

▶ The numbers {0,1, . . . ,n − 1} form a complete set of
residues modulo n since we can write any a as

a = qn + r for 0 ≤ r ≤ n − 1

▶ We usually choose this set as the complete set of residues
and denote it:

Zn = {0,1, . . . ,n − 1}

15 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Residue class

Definition
The set {r0, r1, . . . , rn−1} is called a complete set of residues
modulo n if, for every integer a, a ≡ ri (mod n) for exactly one ri

▶ The numbers {0,1, . . . ,n − 1} form a complete set of
residues modulo n since we can write any a as

a = qn + r for 0 ≤ r ≤ n − 1

▶ We usually choose this set as the complete set of residues
and denote it:

Zn = {0,1, . . . ,n − 1}

15 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Residue class

Definition
The set {r0, r1, . . . , rn−1} is called a complete set of residues
modulo n if, for every integer a, a ≡ ri (mod n) for exactly one ri

▶ The numbers {0,1, . . . ,n − 1} form a complete set of
residues modulo n since we can write any a as

a = qn + r for 0 ≤ r ≤ n − 1

▶ We usually choose this set as the complete set of residues
and denote it:

Zn = {0,1, . . . ,n − 1}

15 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Basic Number Theory

Modular arithmetic

Notation: a mod n

We write
a mod n

to denote the unique value a′ in the complete set of residues
{0,1, . . . ,n − 1} with

a′ ≡ a (mod n)

In other words, a mod n is the remainder after dividing a by n

16 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:

▶ Closure: a · b ∈ G for all a,b ∈ G
▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a

for all a ∈ G
▶ Inverse: for all a ∈ G there exists an element, b, so that

a · b = 1 for all a ∈ G
▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)

We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:
▶ Closure: a · b ∈ G for all a,b ∈ G

▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a
for all a ∈ G

▶ Inverse: for all a ∈ G there exists an element, b, so that
a · b = 1 for all a ∈ G

▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)
We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:
▶ Closure: a · b ∈ G for all a,b ∈ G
▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a

for all a ∈ G

▶ Inverse: for all a ∈ G there exists an element, b, so that
a · b = 1 for all a ∈ G

▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)
We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:
▶ Closure: a · b ∈ G for all a,b ∈ G
▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a

for all a ∈ G
▶ Inverse: for all a ∈ G there exists an element, b, so that

a · b = 1 for all a ∈ G

▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)
We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:
▶ Closure: a · b ∈ G for all a,b ∈ G
▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a

for all a ∈ G
▶ Inverse: for all a ∈ G there exists an element, b, so that

a · b = 1 for all a ∈ G
▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)

We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups

A group is a set, G, with a binary operation, ·, satisfying the
following conditions:
▶ Closure: a · b ∈ G for all a,b ∈ G
▶ Identity: there exists an element, 1, so that a · 1 = 1 · a = a

for all a ∈ G
▶ Inverse: for all a ∈ G there exists an element, b, so that

a · b = 1 for all a ∈ G
▶ Associative: for all a,b, c ∈ G that (a · b) · c = a · (b · c)

We will only be looking at commutative (or abelian) groups
which satisfy also:
▶ Commutative: for all a,b ∈ G that a · b = b · a

17 / 32

https://en.wikipedia.org/wiki/Niels_Henrik_Abel

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Cyclic groups

▶ The order of a group G, often written |G|, is the number of
elements in G

▶ We write gk to denote repeated application of g using the
group operation — for example g3 = g · g · g. The order of
an element g ∈ G, often written |g|, is the smallest integer
k with gk = 1

▶ A group element g is a generator for G if |g| = |G|
▶ A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.

18 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Cyclic groups

▶ The order of a group G, often written |G|, is the number of
elements in G

▶ We write gk to denote repeated application of g using the
group operation — for example g3 = g · g · g. The order of
an element g ∈ G, often written |g|, is the smallest integer
k with gk = 1

▶ A group element g is a generator for G if |g| = |G|
▶ A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.

18 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Cyclic groups

▶ The order of a group G, often written |G|, is the number of
elements in G

▶ We write gk to denote repeated application of g using the
group operation — for example g3 = g · g · g. The order of
an element g ∈ G, often written |g|, is the smallest integer
k with gk = 1

▶ A group element g is a generator for G if |g| = |G|

▶ A group is cyclic if it has a generator
Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.

18 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Cyclic groups

▶ The order of a group G, often written |G|, is the number of
elements in G

▶ We write gk to denote repeated application of g using the
group operation — for example g3 = g · g · g. The order of
an element g ∈ G, often written |g|, is the smallest integer
k with gk = 1

▶ A group element g is a generator for G if |g| = |G|
▶ A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.

18 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Cyclic groups

▶ The order of a group G, often written |G|, is the number of
elements in G

▶ We write gk to denote repeated application of g using the
group operation — for example g3 = g · g · g. The order of
an element g ∈ G, often written |g|, is the smallest integer
k with gk = 1

▶ A group element g is a generator for G if |g| = |G|
▶ A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.

18 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Computing inverses modulo n

▶ The inverse of a, if it exists, is a value x such that

ax ≡ 1 (mod n)

and is written a−1 mod n.

▶ In cryptosystems we often need to find inverses so that we
can decrypt, or undo, certain operations.

Theorem
Let 0 < a < n. Then a has an inverse modulo n if and only if
gcd(a,n) = 1.

19 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Computing inverses modulo n

▶ The inverse of a, if it exists, is a value x such that

ax ≡ 1 (mod n)

and is written a−1 mod n.
▶ In cryptosystems we often need to find inverses so that we

can decrypt, or undo, certain operations.

Theorem
Let 0 < a < n. Then a has an inverse modulo n if and only if
gcd(a,n) = 1.

19 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Computing inverses modulo n

▶ The inverse of a, if it exists, is a value x such that

ax ≡ 1 (mod n)

and is written a−1 mod n.
▶ In cryptosystems we often need to find inverses so that we

can decrypt, or undo, certain operations.

Theorem
Let 0 < a < n. Then a has an inverse modulo n if and only if
gcd(a,n) = 1.

19 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Modular inverses using Euclidean algorithm

▶ To find the inverse of a we can use the Euclidean algorithm
which is very efficient

▶ Remember that we want to solve for x , given a:

ax ≡ 1 (mod n)

▶ Since gcd(a,n) = 1 we can find ax + ny = 1 for integers x
and y by Euclidean algorithm. Therefore:

ax = 1− ny
ax ≡ 1 (mod n)

20 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Modular inverses using Euclidean algorithm

▶ To find the inverse of a we can use the Euclidean algorithm
which is very efficient

▶ Remember that we want to solve for x , given a:

ax ≡ 1 (mod n)

▶ Since gcd(a,n) = 1 we can find ax + ny = 1 for integers x
and y by Euclidean algorithm. Therefore:

ax = 1− ny
ax ≡ 1 (mod n)

20 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Modular inverses using Euclidean algorithm

▶ To find the inverse of a we can use the Euclidean algorithm
which is very efficient

▶ Remember that we want to solve for x , given a:

ax ≡ 1 (mod n)

▶ Since gcd(a,n) = 1 we can find ax + ny = 1 for integers x
and y by Euclidean algorithm. Therefore:

ax = 1− ny
ax ≡ 1 (mod n)

20 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.

▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.
▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.
▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.
▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.
▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Z∗p

▶ A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Z∗

p.
▶ Some useful properties:

▶ The order of Z∗
p is p − 1

▶ Z∗
p is cyclic

▶ Z∗
p has many generators in general

▶ Z∗
p can be represented as the multiplicative group of

integers {1,2, . . . ,p − 1}

21 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Finding a generator of Z∗p

▶ A generator of Z∗
p is an element of order p − 1

▶ A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p − 1

▶ To find a generator of Z∗
p we can choose a value g and test

it as follows:

1. compute all the distinct prime factors of p − 1 and call them
f1, f2, . . . , fr

2. then g is a generator as long as g(p−1)/fi ̸= 1 mod p for
i = 1,2, , . . . , r

22 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Finding a generator of Z∗p

▶ A generator of Z∗
p is an element of order p − 1

▶ A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p − 1

▶ To find a generator of Z∗
p we can choose a value g and test

it as follows:

1. compute all the distinct prime factors of p − 1 and call them
f1, f2, . . . , fr

2. then g is a generator as long as g(p−1)/fi ̸= 1 mod p for
i = 1,2, , . . . , r

22 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Finding a generator of Z∗p

▶ A generator of Z∗
p is an element of order p − 1

▶ A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p − 1

▶ To find a generator of Z∗
p we can choose a value g and test

it as follows:

1. compute all the distinct prime factors of p − 1 and call them
f1, f2, . . . , fr

2. then g is a generator as long as g(p−1)/fi ̸= 1 mod p for
i = 1,2, , . . . , r

22 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Finding a generator of Z∗p

▶ A generator of Z∗
p is an element of order p − 1

▶ A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p − 1

▶ To find a generator of Z∗
p we can choose a value g and test

it as follows:
1. compute all the distinct prime factors of p − 1 and call them

f1, f2, . . . , fr

2. then g is a generator as long as g(p−1)/fi ̸= 1 mod p for
i = 1,2, , . . . , r

22 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Finding a generator of Z∗p

▶ A generator of Z∗
p is an element of order p − 1

▶ A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p − 1

▶ To find a generator of Z∗
p we can choose a value g and test

it as follows:
1. compute all the distinct prime factors of p − 1 and call them

f1, f2, . . . , fr
2. then g is a generator as long as g(p−1)/fi ̸= 1 mod p for

i = 1,2, , . . . , r

22 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups for composite modulus: Z∗n

▶ For any n, which may or may not be prime, we can define
Z∗

n to be the group of residues which have an inverse
under multiplication

▶ Z∗
n is a group but is not cyclic in general

▶ Finding the order of Z∗
n is difficult in general

23 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups for composite modulus: Z∗n

▶ For any n, which may or may not be prime, we can define
Z∗

n to be the group of residues which have an inverse
under multiplication

▶ Z∗
n is a group but is not cyclic in general

▶ Finding the order of Z∗
n is difficult in general

23 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Groups

Groups for composite modulus: Z∗n

▶ For any n, which may or may not be prime, we can define
Z∗

n to be the group of residues which have an inverse
under multiplication

▶ Z∗
n is a group but is not cyclic in general

▶ Finding the order of Z∗
n is difficult in general

23 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Fields

A field is a set, F , with two binary operations, + and ·, satisfying
the following conditions:

▶ F is a commutative group under the + operation, with
identity element denoted 0

▶ F \ {0} is a commutative group under the · operation
▶ Distributive: for all a,b, c ∈ F :

a · (b + c) = (a · b) + (a · c)

24 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Fields

A field is a set, F , with two binary operations, + and ·, satisfying
the following conditions:
▶ F is a commutative group under the + operation, with

identity element denoted 0

▶ F \ {0} is a commutative group under the · operation
▶ Distributive: for all a,b, c ∈ F :

a · (b + c) = (a · b) + (a · c)

24 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Fields

A field is a set, F , with two binary operations, + and ·, satisfying
the following conditions:
▶ F is a commutative group under the + operation, with

identity element denoted 0
▶ F \ {0} is a commutative group under the · operation

▶ Distributive: for all a,b, c ∈ F :

a · (b + c) = (a · b) + (a · c)

24 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Fields

A field is a set, F , with two binary operations, + and ·, satisfying
the following conditions:
▶ F is a commutative group under the + operation, with

identity element denoted 0
▶ F \ {0} is a commutative group under the · operation
▶ Distributive: for all a,b, c ∈ F :

a · (b + c) = (a · b) + (a · c)

24 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite fields

▶ For secure communications we are usually only interested
in fields with a finite number of elements

▶ A famous theorem says that finite fields exist of size pn for
any prime p and positive integer n, and that no finite field
exists of other sizes

▶ The most interesting cases for us are fields of size p for a
prime p and fields of size 2n for some integer n

25 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite fields

▶ For secure communications we are usually only interested
in fields with a finite number of elements

▶ A famous theorem says that finite fields exist of size pn for
any prime p and positive integer n, and that no finite field
exists of other sizes

▶ The most interesting cases for us are fields of size p for a
prime p and fields of size 2n for some integer n

25 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite fields

▶ For secure communications we are usually only interested
in fields with a finite number of elements

▶ A famous theorem says that finite fields exist of size pn for
any prime p and positive integer n, and that no finite field
exists of other sizes

▶ The most interesting cases for us are fields of size p for a
prime p and fields of size 2n for some integer n

25 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (p)

▶ We often write Zp instead of GF (p)

▶ Multiplication and addition are done modulo p
▶ Multiplicative group is exactly Z∗

p

▶ Later in the course we will see some public key encryption
and digital signature schemes using GF (p)

26 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (p)

▶ We often write Zp instead of GF (p)
▶ Multiplication and addition are done modulo p

▶ Multiplicative group is exactly Z∗
p

▶ Later in the course we will see some public key encryption
and digital signature schemes using GF (p)

26 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (p)

▶ We often write Zp instead of GF (p)
▶ Multiplication and addition are done modulo p
▶ Multiplicative group is exactly Z∗

p

▶ Later in the course we will see some public key encryption
and digital signature schemes using GF (p)

26 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (p)

▶ We often write Zp instead of GF (p)
▶ Multiplication and addition are done modulo p
▶ Multiplicative group is exactly Z∗

p

▶ Later in the course we will see some public key encryption
and digital signature schemes using GF (p)

26 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2)

▶ GF (2) is the simplest field. It has only two elements.

▶ Addition is binary addition modulo 2. This is the same as
the logical XOR (exclusive-OR) operation

▶ Since there is only one non-zero element we have a trivial
multiplicative group with the single element 1.

▶ We often use XOR in cryptography, usually written ⊕. For
bit strings a and b we write a⊕ b for the bit-wise XOR. For
example,

101⊕ 011 = 110

27 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2)

▶ GF (2) is the simplest field. It has only two elements.
▶ Addition is binary addition modulo 2. This is the same as

the logical XOR (exclusive-OR) operation

▶ Since there is only one non-zero element we have a trivial
multiplicative group with the single element 1.

▶ We often use XOR in cryptography, usually written ⊕. For
bit strings a and b we write a⊕ b for the bit-wise XOR. For
example,

101⊕ 011 = 110

27 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2)

▶ GF (2) is the simplest field. It has only two elements.
▶ Addition is binary addition modulo 2. This is the same as

the logical XOR (exclusive-OR) operation
▶ Since there is only one non-zero element we have a trivial

multiplicative group with the single element 1.

▶ We often use XOR in cryptography, usually written ⊕. For
bit strings a and b we write a⊕ b for the bit-wise XOR. For
example,

101⊕ 011 = 110

27 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2)

▶ GF (2) is the simplest field. It has only two elements.
▶ Addition is binary addition modulo 2. This is the same as

the logical XOR (exclusive-OR) operation
▶ Since there is only one non-zero element we have a trivial

multiplicative group with the single element 1.
▶ We often use XOR in cryptography, usually written ⊕. For

bit strings a and b we write a⊕ b for the bit-wise XOR. For
example,

101⊕ 011 = 110

27 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2n)

▶ Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

▶ This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101↔ x5 + x3 + x2 + 1

▶ The field can be represented in different ways by use of a
primitive polynomial m(x)

▶ Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

▶ Polynomial division can be done very efficiently in
hardware using shift registers

28 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2n)

▶ Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

▶ This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101↔ x5 + x3 + x2 + 1

▶ The field can be represented in different ways by use of a
primitive polynomial m(x)

▶ Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

▶ Polynomial division can be done very efficiently in
hardware using shift registers

28 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2n)

▶ Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

▶ This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101↔ x5 + x3 + x2 + 1

▶ The field can be represented in different ways by use of a
primitive polynomial m(x)

▶ Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

▶ Polynomial division can be done very efficiently in
hardware using shift registers

28 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2n)

▶ Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

▶ This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101↔ x5 + x3 + x2 + 1

▶ The field can be represented in different ways by use of a
primitive polynomial m(x)

▶ Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

▶ Polynomial division can be done very efficiently in
hardware using shift registers

28 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Finite field GF (2n)

▶ Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

▶ This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101↔ x5 + x3 + x2 + 1

▶ The field can be represented in different ways by use of a
primitive polynomial m(x)

▶ Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

▶ Polynomial division can be done very efficiently in
hardware using shift registers

28 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Arithmetic in GF (28)

▶ This field is used for calculations in the AES block cipher

▶ To add two strings we add their coefficients modulo 2
(exclusive or)

▶ Multiplication is done with respect to a generator
polynomial which for AES is chosen as:

m(x) = x8 + x4 + x3 + x + 1

▶ To multiply two strings we multiply them as polynomials
and then take their remainder after dividing by m(x)

29 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Arithmetic in GF (28)

▶ This field is used for calculations in the AES block cipher
▶ To add two strings we add their coefficients modulo 2

(exclusive or)

▶ Multiplication is done with respect to a generator
polynomial which for AES is chosen as:

m(x) = x8 + x4 + x3 + x + 1

▶ To multiply two strings we multiply them as polynomials
and then take their remainder after dividing by m(x)

29 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Arithmetic in GF (28)

▶ This field is used for calculations in the AES block cipher
▶ To add two strings we add their coefficients modulo 2

(exclusive or)
▶ Multiplication is done with respect to a generator

polynomial which for AES is chosen as:

m(x) = x8 + x4 + x3 + x + 1

▶ To multiply two strings we multiply them as polynomials
and then take their remainder after dividing by m(x)

29 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Finite Fields

Arithmetic in GF (28)

▶ This field is used for calculations in the AES block cipher
▶ To add two strings we add their coefficients modulo 2

(exclusive or)
▶ Multiplication is done with respect to a generator

polynomial which for AES is chosen as:

m(x) = x8 + x4 + x3 + x + 1

▶ To multiply two strings we multiply them as polynomials
and then take their remainder after dividing by m(x)

29 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean values

▶ A Boolean variable x takes the values of 1 or 0
representing true or false

▶ A Boolean function is any function with range (output) in
the set {0,1}

▶ Boolean functions are often represented by a truth table
▶ Each row in the table defines one possible input (tuple)

and the associated output value

30 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean values

▶ A Boolean variable x takes the values of 1 or 0
representing true or false

▶ A Boolean function is any function with range (output) in
the set {0,1}

▶ Boolean functions are often represented by a truth table
▶ Each row in the table defines one possible input (tuple)

and the associated output value

30 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean values

▶ A Boolean variable x takes the values of 1 or 0
representing true or false

▶ A Boolean function is any function with range (output) in
the set {0,1}

▶ Boolean functions are often represented by a truth table

▶ Each row in the table defines one possible input (tuple)
and the associated output value

30 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean values

▶ A Boolean variable x takes the values of 1 or 0
representing true or false

▶ A Boolean function is any function with range (output) in
the set {0,1}

▶ Boolean functions are often represented by a truth table
▶ Each row in the table defines one possible input (tuple)

and the associated output value

30 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean operations

▶ Logical AND: equivalent to multiplication modulo 2
x1 x2 z = x1 ∧ x2
1 1 1
1 0 0
0 1 0
0 0 0

▶ Logical OR:
x1 x2 z = x1 ∨ x2
1 1 1
1 0 1
0 1 1
0 0 0

31 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Boolean operations

▶ Logical AND: equivalent to multiplication modulo 2
x1 x2 z = x1 ∧ x2
1 1 1
1 0 0
0 1 0
0 0 0

▶ Logical OR:
x1 x2 z = x1 ∨ x2
1 1 1
1 0 1
0 1 1
0 0 0

31 / 32

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Negation

Truth table

x ¬x
1 0
0 1

We can also write ¬x = x ∧ 1

32 / 32

	Basic Number Theory
	Primes and Factorisation
	GCD and the Euclidean Algorithm
	Modular arithmetic

	Groups
	Finite Fields
	Boolean Algebra

