Lecture 2: Number Theory, Groups and Finite Fields

TTM4135

Relates to Stallings Chapters 2 and 5
Spring Semester, 2024

Motivation

- Cryptography makes use of mathematics, computer science and engineering

Motivation

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters

Motivation

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters
- We therefore look at modular arithmetic which only deals with a finite number of values

Motivation

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters
- We therefore look at modular arithmetic which only deals with a finite number of values
- Understanding the algebraic structure of finite objects helps to build useful cryptographic properties

Outline

Basic Number Theory
 Primes and Factorisation GCD and the Euclidean Algorithm
 Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Outline

Basic Number Theory
 Primes and Factorisation
 GCD and the Euclidean Algorithm Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Factorisation

- Let \mathbb{Z} denote the set of integers

Factorisation

- Let \mathbb{Z} denote the set of integers
- For a and b in \mathbb{Z}, we say that a divides b (or a is a factor of b, or write $a \mid b$) if there exists k in \mathbb{Z} such that $a k=b$

Factorisation

- Let \mathbb{Z} denote the set of integers
- For a and b in \mathbb{Z}, we say that a divides b (or a is a factor of b, or write $a \mid b$) if there exists k in \mathbb{Z} such that $a k=b$
- An integer $p>1$ is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p

Factorisation

- Let \mathbb{Z} denote the set of integers
- For a and b in \mathbb{Z}, we say that a divides b (or a is a factor of b, or write $a \mid b$) if there exists k in \mathbb{Z} such that $a k=b$
- An integer $p>1$ is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p
- We can test for prime numbers by trial division (up to the square root of the number being tested)

Factorisation

- Let \mathbb{Z} denote the set of integers
- For a and b in \mathbb{Z}, we say that a divides b (or a is a factor of b, or write $a \mid b$) if there exists k in \mathbb{Z} such that $a k=b$
- An integer $p>1$ is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p
- We can test for prime numbers by trial division (up to the square root of the number being tested)
- In a later lecture we will look at a more efficient way to check for primality

Basic Properties of Factors

1. If a divides b and a divides c, then a divides $b+c$

Basic Properties of Factors

1. If a divides b and a divides c, then a divides $b+c$
2. If p is a prime and p divides $a b$, then p divides a or b

Basic Properties of Factors

1. If a divides b and a divides c, then a divides $b+c$
2. If p is a prime and p divides $a b$, then p divides a or b

Euclidean division

For a and b in $\mathbb{Z}, a>b$, there exist unique q and r in \mathbb{Z} such that:

$$
a=b q+r
$$

where $0 \leq r<b$.

Outline

Basic Number Theory
 Primes and Factorisation GCD and the Euclidean Algorithm Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Greatest common divisor (GCD)

The value d is the GCD of a and b, written $\operatorname{gcd}(a, b)=d$, if all of the following hold:

Greatest common divisor (GCD)

The value d is the GCD of a and b, written $\operatorname{gcd}(a, b)=d$, if all of the following hold:

1. d divides a and b

Greatest common divisor (GCD)

The value d is the GCD of a and b, written $\operatorname{gcd}(a, b)=d$, if all of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d

Greatest common divisor (GCD)

The value d is the GCD of a and b, written $\operatorname{gcd}(a, b)=d$, if all of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d
3. $d>0$

Greatest common divisor (GCD)

The value d is the GCD of a and b, written $\operatorname{gcd}(a, b)=d$, if all of the following hold:

1. d divides a and b
2. if c divides a and b then c divides d
3. $d>0$

We say that a and b are relatively prime if $\operatorname{gcd}(a, b)=1$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
a=b q_{1}+r_{1}, \text { for } 0<r_{1}<b
$$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
\begin{aligned}
& a=b q_{1}+r_{1}, \text { for } 0<r_{1}<b \\
& b=r_{1} q_{2}+r_{2}, \text { for } 0<r_{2}<r_{1}
\end{aligned}
$$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \text { for } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, \text { for } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, \text { for } 0<r_{3}<r_{2}
\end{aligned}
$$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \text { for } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, \text { for } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, \text { for } 0<r_{3}<r_{2} \\
& \vdots \\
r_{k-2} & =r_{k-1} q_{k}+r_{k}, \text { for } 0<r_{k}<r_{k-1}
\end{aligned}
$$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \text { for } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, \text { for } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, \text { for } 0<r_{3}<r_{2} \\
& \vdots \\
r_{k-2} & =r_{k-1} q_{k}+r_{k}, \text { for } 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1}, \text { where } r_{k+1}=0
\end{aligned}
$$

Euclidean algorithm

One can find $d=\operatorname{gcd}(a, b)$.
Let q_{i} be the quotient and r_{i} be the remainder in the following.

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \text { for } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, \text { for } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, \text { for } 0<r_{3}<r_{2} \\
& \vdots \\
r_{k-2} & =r_{k-1} q_{k}+r_{k}, \text { for } 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1}, \text { where } r_{k+1}=0
\end{aligned}
$$

Then $d=r_{k}=\operatorname{gcd}(a, b)$.

Data: a, b

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a ;$

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0 ;$

Algorithm: Euclidean algorithm

```
Data: a,b
Result: gcd(a,b)
r-1}\leftarrowa
ro \leftarrowb;
k\leftarrow0;
while }\mp@subsup{r}{k}{}\not=0\mathrm{ do
|
end
```

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0 ;$
while $r_{k} \neq 0$ do

$$
q_{k} \leftarrow\left\lfloor\frac{r_{k-1}}{r_{k}}\right\rfloor
$$

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0$;
while $r_{k} \neq 0$ do

$$
\begin{aligned}
& q_{k} \leftarrow\left\lfloor\frac{r_{k-1}}{r_{k}}\right\rfloor ; \\
& r_{k+1} \leftarrow r_{k-1}-q_{k} r_{k}
\end{aligned}
$$

end

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0$;
while $r_{k} \neq 0$ do
$q_{k} \leftarrow\left\lfloor\frac{r_{k-1}}{r_{k}}\right\rfloor ;$
$r_{k+1} \leftarrow r_{k-1}-q_{k} r_{k} ;$ $k \leftarrow k+1 ;$
end

Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0$;
while $r_{k} \neq 0$ do
$q_{k} \leftarrow\left\lfloor\frac{r_{k-1}}{r_{k}}\right\rfloor ;$
$r_{k+1} \leftarrow r_{k-1}-q_{k} r_{k} ;$ $k \leftarrow k+1$;
end
$k \leftarrow k-1 ;$
Algorithm: Euclidean algorithm

Data: a, b
Result: $\operatorname{gcd}(a, b)$
$r_{-1} \leftarrow a$;
$r_{0} \leftarrow b ;$
$k \leftarrow 0$;
while $r_{k} \neq 0$ do
$q_{k} \leftarrow\left\lfloor\frac{r_{k-1}}{r_{k}}\right\rfloor ;$
$r_{k+1} \leftarrow r_{k-1}-q_{k} r_{k} ;$ $k \leftarrow k+1 ;$
end
$k \leftarrow k-1$;
return r_{k}
Algorithm: Euclidean algorithm

Back substitution (extended Euclidean algorithm)

- By back substitution in the Euclidean algorithm we can find integers x and y where

$$
a x+b y=d=r_{k}
$$

Back substitution (extended Euclidean algorithm)

- By back substitution in the Euclidean algorithm we can find integers x and y where

$$
a x+b y=d=r_{k}
$$

- Starting with the penultimate line in the algorithm, $r_{k-2}=r_{k-1} q_{k}+r_{k}$, we can compute

$$
r_{k}=r_{k-2}-r_{k-1} q_{k}
$$

Back substitution (extended Euclidean algorithm)

- By back substitution in the Euclidean algorithm we can find integers x and y where

$$
a x+b y=d=r_{k}
$$

- Starting with the penultimate line in the algorithm, $r_{k-2}=r_{k-1} q_{k}+r_{k}$, we can compute

$$
r_{k}=r_{k-2}-r_{k-1} q_{k}
$$

Then we replace r_{k-1} in this equation from the next line up, $r_{k-1}=r_{k-3}-r_{k-2} q_{k-1}$ to get

Back substitution (extended Euclidean algorithm)

- By back substitution in the Euclidean algorithm we can find integers x and y where

$$
a x+b y=d=r_{k}
$$

- Starting with the penultimate line in the algorithm, $r_{k-2}=r_{k-1} q_{k}+r_{k}$, we can compute

$$
r_{k}=r_{k-2}-r_{k-1} q_{k}
$$

Then we replace r_{k-1} in this equation from the next line up, $r_{k-1}=r_{k-3}-r_{k-2} q_{k-1}$ to get

$$
\begin{aligned}
r_{k} & =r_{k-2}-\left(r_{k-3}-r_{k-2} q_{k-1}\right) q_{k} \\
& =r_{k-2}\left(1+q_{k-1} q_{k}\right)-r_{k-3} q_{k}
\end{aligned}
$$

- Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.
- Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.
- Finally replacing r_{1} by $r_{1}=a-b q_{1}$ from the first line gives us r_{k} in terms of a multiple of a and a multiple of b.
- Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.
- Finally replacing r_{1} by $r_{1}=a-b q_{1}$ from the first line gives us r_{k} in terms of a multiple of a and a multiple of b.
- We will be particularly interested in the case where $r_{k}=d=1$.

Outline

Basic Number Theory
 Primes and Factorisation GCD and the Euclidean Algorithm
 Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Modular arithmetic

Definition
b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Modular arithmetic

Definition
b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Given $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

Modular arithmetic

Definition
b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Given $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then 1. $a+c \equiv b+d(\bmod n)$

Modular arithmetic

Definition
b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Given $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

1. $a+c \equiv b+d(\bmod n)$
2. $a c \equiv b d(\bmod n)$

Modular arithmetic

Definition

b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Given $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

1. $a+c \equiv b+d(\bmod n)$
2. $a c \equiv b d(\bmod n)$
3. $k a \equiv k b(\bmod n)$

Modular arithmetic

Definition

b is a residue of a modulo n if $a-b=k n$ for some integer k.

$$
a \equiv b \quad(\bmod n) \Longleftrightarrow a-b=k n .
$$

Given $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

1. $a+c \equiv b+d(\bmod n)$
2. $a c \equiv b d(\bmod n)$
3. $k a \equiv k b(\bmod n)$

Note
This means we can always reduce the inputs modulo n before performing multiplication or addition.

Residue class

Definition

The set $\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ is called a complete set of residues modulo n if, for every integer $a, a \equiv r_{i}(\bmod n)$ for exactly one r_{i}

Residue class

Definition

The set $\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ is called a complete set of residues modulo n if, for every integer $a, a \equiv r_{i}(\bmod n)$ for exactly one r_{i}

- The numbers $\{0,1, \ldots, n-1\}$ form a complete set of residues modulo n since we can write any a as

$$
a=q n+r \text { for } 0 \leq r \leq n-1
$$

Residue class

Definition

The set $\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$ is called a complete set of residues modulo n if, for every integer $a, a \equiv r_{i}(\bmod n)$ for exactly one r_{i}

- The numbers $\{0,1, \ldots, n-1\}$ form a complete set of residues modulo n since we can write any a as

$$
a=q n+r \text { for } 0 \leq r \leq n-1
$$

- We usually choose this set as the complete set of residues and denote it:

$$
\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}
$$

Notation: $a \bmod n$

We write

$$
a \bmod n
$$

to denote the unique value a^{\prime} in the complete set of residues $\{0,1, \ldots, n-1\}$ with

$$
a^{\prime} \equiv a \quad(\bmod n)
$$

In other words, $a \bmod n$ is the remainder after dividing a by n

Groups

A group is a set, G, with a binary operation, \cdot, satisfying the following conditions:

Groups

A group is a set, G, with a binary operation, \cdot, satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$

Groups

A group is a set, G, with a binary operation, \cdot, satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1 , so that $a \cdot 1=1 \cdot a=a$ for all $a \in G$

Groups

A group is a set, G, with a binary operation, \cdot, satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1 , so that $a \cdot 1=1 \cdot a=a$ for all $a \in G$
- Inverse: for all $a \in G$ there exists an element, b, so that $a \cdot b=1$ for all $a \in G$

Groups

A group is a set, G, with a binary operation, \cdot, satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1 , so that $a \cdot 1=1 \cdot a=a$ for all $a \in G$
- Inverse: for all $a \in G$ there exists an element, b, so that $a \cdot b=1$ for all $a \in G$
- Associative: for all $a, b, c \in G$ that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

Groups

A group is a set, G, with a binary operation, •, satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1 , so that $a \cdot 1=1 \cdot a=a$ for all $a \in G$
- Inverse: for all $a \in G$ there exists an element, b, so that $a \cdot b=1$ for all $a \in G$
- Associative: for all $a, b, c \in G$ that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

We will only be looking at commutative (or abelian) groups which satisfy also:

- Commutative: for all $a, b \in G$ that $a \cdot b=b \cdot a$

Cyclic groups

- The order of a group G, often written $|G|$, is the number of elements in G

Cyclic groups

- The order of a group G, often written $|G|$, is the number of elements in G
- We write g^{k} to denote repeated application of g using the group operation — for example $g^{3}=g \cdot g \cdot g$. The order of an element $g \in G$, often written $|g|$, is the smallest integer k with $g^{k}=1$

Cyclic groups

- The order of a group G, often written $|G|$, is the number of elements in G
- We write g^{k} to denote repeated application of g using the group operation — for example $g^{3}=g \cdot g \cdot g$. The order of an element $g \in G$, often written $|g|$, is the smallest integer k with $g^{k}=1$
- A group element g is a generator for G if $|g|=|G|$

Cyclic groups

- The order of a group G, often written $|G|$, is the number of elements in G
- We write g^{k} to denote repeated application of g using the group operation — for example $g^{3}=g \cdot g \cdot g$. The order of an element $g \in G$, often written $|g|$, is the smallest integer k with $g^{k}=1$
- A group element g is a generator for G if $|g|=|G|$
- A group is cyclic if it has a generator

Cyclic groups

- The order of a group G, often written $|G|$, is the number of elements in G
- We write g^{k} to denote repeated application of g using the group operation — for example $g^{3}=g \cdot g \cdot g$. The order of an element $g \in G$, often written $|g|$, is the smallest integer k with $g^{k}=1$
- A group element g is a generator for G if $|g|=|G|$
- A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we construct a group G with large order then we can be sure that a generator g can also take on the same large number of values.

Computing inverses modulo n

- The inverse of a, if it exists, is a value x such that

$$
a x \equiv 1 \quad(\bmod n)
$$

and is written $a^{-1} \bmod n$.

Computing inverses modulo n

- The inverse of a, if it exists, is a value x such that

$$
a x \equiv 1 \quad(\bmod n)
$$

and is written $a^{-1} \bmod n$.

- In cryptosystems we often need to find inverses so that we can decrypt, or undo, certain operations.

Computing inverses modulo n

- The inverse of a, if it exists, is a value x such that

$$
a x \equiv 1 \quad(\bmod n)
$$

and is written $a^{-1} \bmod n$.

- In cryptosystems we often need to find inverses so that we can decrypt, or undo, certain operations.

Theorem
Let $0<a<n$. Then a has an inverse modulo n if and only if $\operatorname{gcd}(a, n)=1$.

Modular inverses using Euclidean algorithm

- To find the inverse of a we can use the Euclidean algorithm which is very efficient

Modular inverses using Euclidean algorithm

- To find the inverse of a we can use the Euclidean algorithm which is very efficient
- Remember that we want to solve for x, given a:

$$
a x \equiv 1 \quad(\bmod n)
$$

Modular inverses using Euclidean algorithm

- To find the inverse of a we can use the Euclidean algorithm which is very efficient
- Remember that we want to solve for x, given a :

$$
a x \equiv 1 \quad(\bmod n)
$$

- Since $\operatorname{gcd}(a, n)=1$ we can find $a x+n y=1$ for integers x and y by Euclidean algorithm. Therefore:

$$
\begin{aligned}
a x & =1-n y \\
a x & \equiv 1(\bmod n)
\end{aligned}
$$

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- Some useful properties:
- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- Some useful properties:
- The order of \mathbb{Z}_{p}^{*} is $p-1$
- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- Some useful properties:
- The order of \mathbb{Z}_{p}^{*} is $p-1$
- \mathbb{Z}_{p}^{*} is cyclic
- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- Some useful properties:
- The order of \mathbb{Z}_{p}^{*} is $p-1$
- \mathbb{Z}_{p}^{*} is cyclic
- \mathbb{Z}_{p}^{*} has many generators in general
- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted \mathbb{Z}_{p}^{*}.
- Some useful properties:
- The order of \mathbb{Z}_{p}^{*} is $p-1$
- \mathbb{Z}_{p}^{*} is cyclic
- \mathbb{Z}_{p}^{*} has many generators in general
- \mathbb{Z}_{p}^{*} can be represented as the multiplicative group of integers $\{1,2, \ldots, p-1\}$

Finding a generator of \mathbb{Z}_{p}^{*}

- A generator of \mathbb{Z}_{p}^{*} is an element of order $p-1$

Finding a generator of \mathbb{Z}_{p}^{*}

- A generator of \mathbb{Z}_{p}^{*} is an element of order $p-1$
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide $p-1$

Finding a generator of \mathbb{Z}_{p}^{*}

- A generator of \mathbb{Z}_{p}^{*} is an element of order $p-1$
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide $p-1$
- To find a generator of \mathbb{Z}_{p}^{*} we can choose a value g and test it as follows:

Finding a generator of \mathbb{Z}_{p}^{*}

- A generator of \mathbb{Z}_{p}^{*} is an element of order $p-1$
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide $p-1$
- To find a generator of \mathbb{Z}_{p}^{*} we can choose a value g and test it as follows:

1. compute all the distinct prime factors of $p-1$ and call them $f_{1}, f_{2}, \ldots, f_{r}$

Finding a generator of \mathbb{Z}_{p}^{*}

- A generator of \mathbb{Z}_{p}^{*} is an element of order $p-1$
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide $p-1$
- To find a generator of \mathbb{Z}_{p}^{*} we can choose a value g and test it as follows:

1. compute all the distinct prime factors of $p-1$ and call them $f_{1}, f_{2}, \ldots, f_{r}$
2. then g is a generator as long as $g^{(p-1) / f_{i}} \neq 1 \bmod p$ for $i=1,2, \ldots, r$

Groups for composite modulus: \mathbb{Z}_{n}^{*}

- For any n, which may or may not be prime, we can define \mathbb{Z}_{n}^{*} to be the group of residues which have an inverse under multiplication

Groups for composite modulus: \mathbb{Z}_{n}^{*}

- For any n, which may or may not be prime, we can define \mathbb{Z}_{n}^{*} to be the group of residues which have an inverse under multiplication
- \mathbb{Z}_{n}^{*} is a group but is not cyclic in general

Groups for composite modulus: \mathbb{Z}_{n}^{*}

- For any n, which may or may not be prime, we can define \mathbb{Z}_{n}^{*} to be the group of residues which have an inverse under multiplication
- \mathbb{Z}_{n}^{*} is a group but is not cyclic in general
- Finding the order of \mathbb{Z}_{n}^{*} is difficult in general

Fields

A field is a set, F, with two binary operations, + and \cdot, satisfying the following conditions:

Fields

A field is a set, F, with two binary operations, + and \cdot, satisfying the following conditions:

- F is a commutative group under the + operation, with identity element denoted 0

Fields

A field is a set, F, with two binary operations, + and \cdot, satisfying the following conditions:

- F is a commutative group under the + operation, with identity element denoted 0
- $F \backslash\{0\}$ is a commutative group under the • operation

Fields

A field is a set, F, with two binary operations, + and \cdot, satisfying the following conditions:

- F is a commutative group under the + operation, with identity element denoted 0
- $F \backslash\{0\}$ is a commutative group under the • operation
- Distributive: for all $a, b, c \in F$:

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c)
$$

Finite fields

- For secure communications we are usually only interested in fields with a finite number of elements

Finite fields

- For secure communications we are usually only interested in fields with a finite number of elements
- A famous theorem says that finite fields exist of size p^{n} for any prime p and positive integer n, and that no finite field exists of other sizes

Finite fields

- For secure communications we are usually only interested in fields with a finite number of elements
- A famous theorem says that finite fields exist of size p^{n} for any prime p and positive integer n, and that no finite field exists of other sizes
- The most interesting cases for us are fields of size p for a prime p and fields of size 2^{n} for some integer n

Finite field $G F(p)$

- We often write \mathbb{Z}_{p} instead of $G F(p)$

Finite field $G F(p)$

- We often write \mathbb{Z}_{p} instead of $G F(p)$
- Multiplication and addition are done modulo p

Finite field $G F(p)$

- We often write \mathbb{Z}_{p} instead of $G F(p)$
- Multiplication and addition are done modulo p
- Multiplicative group is exactly \mathbb{Z}_{p}^{*}

Finite field $G F(p)$

- We often write \mathbb{Z}_{p} instead of $G F(p)$
- Multiplication and addition are done modulo p
- Multiplicative group is exactly \mathbb{Z}_{p}^{*}
- Later in the course we will see some public key encryption and digital signature schemes using $G F(p)$

Finite field $G F(2)$

- $G F(2)$ is the simplest field. It has only two elements.

Finite field $G F(2)$

- $G F(2)$ is the simplest field. It has only two elements.
- Addition is binary addition modulo 2 . This is the same as the logical XOR (exclusive-OR) operation

Finite field $G F(2)$

- $G F(2)$ is the simplest field. It has only two elements.
- Addition is binary addition modulo 2 . This is the same as the logical XOR (exclusive-OR) operation
- Since there is only one non-zero element we have a trivial multiplicative group with the single element 1.

Finite field $G F(2)$

- $G F(2)$ is the simplest field. It has only two elements.
- Addition is binary addition modulo 2 . This is the same as the logical XOR (exclusive-OR) operation
- Since there is only one non-zero element we have a trivial multiplicative group with the single element 1.
- We often use XOR in cryptography, usually written \oplus. For bit strings a and b we write $a \oplus b$ for the bit-wise XOR. For example,

$$
101 \oplus 011=110
$$

Finite field $G F\left(2^{n}\right)$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients

Finite field $G F\left(2^{n}\right)$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- This allow us to equate any n-bit string with a polynomial in a natural way: for example $00101101 \leftrightarrow x^{5}+x^{3}+x^{2}+1$

Finite field $G F\left(2^{n}\right)$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- This allow us to equate any n-bit string with a polynomial in a natural way: for example $00101101 \leftrightarrow x^{5}+x^{3}+x^{2}+1$
- The field can be represented in different ways by use of a primitive polynomial $m(x)$

Finite field $G F\left(2^{n}\right)$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- This allow us to equate any n-bit string with a polynomial in a natural way: for example $00101101 \leftrightarrow x^{5}+x^{3}+x^{2}+1$
- The field can be represented in different ways by use of a primitive polynomial $m(x)$
- Addition and multiplication is defined by polynomial addition and multiplication modulo $m(x)$

Finite field $G F\left(2^{n}\right)$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- This allow us to equate any n-bit string with a polynomial in a natural way: for example $00101101 \leftrightarrow x^{5}+x^{3}+x^{2}+1$
- The field can be represented in different ways by use of a primitive polynomial $m(x)$
- Addition and multiplication is defined by polynomial addition and multiplication modulo $m(x)$
- Polynomial division can be done very efficiently in hardware using shift registers

Arithmetic in $G F\left(2^{8}\right)$

- This field is used for calculations in the AES block cipher

Arithmetic in $G F\left(2^{8}\right)$

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)

Arithmetic in $G F\left(2^{8}\right)$

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)
- Multiplication is done with respect to a generator polynomial which for AES is chosen as:

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

Arithmetic in $G F\left(2^{8}\right)$

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)
- Multiplication is done with respect to a generator polynomial which for AES is chosen as:

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

- To multiply two strings we multiply them as polynomials and then take their remainder after dividing by $m(x)$

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean function is any function with range (output) in the set $\{0,1\}$

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean function is any function with range (output) in the set $\{0,1\}$
- Boolean functions are often represented by a truth table

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean function is any function with range (output) in the set $\{0,1\}$
- Boolean functions are often represented by a truth table
- Each row in the table defines one possible input (tuple) and the associated output value

Boolean operations

- Logical AND: equivalent to multiplication modulo 2

x_{1}	x_{2}	$z=x_{1} \wedge x_{2}$
1	1	1
1	0	0
0	1	0
0	0	0

Boolean operations

- Logical AND: equivalent to multiplication modulo 2

x_{1}	x_{2}	$z=x_{1} \wedge x_{2}$
1	1	1
1	0	0
0	1	0
0	0	0

- Logical OR:

x_{1}	x_{2}	$z=x_{1} \vee x_{2}$
1	1	1
1	0	1
0	1	1
0	0	0

Negation

Truth table

x	$\neg x$
1	0
0	1

We can also write $\neg x=x \wedge 1$

