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Motivation

» Cryptography makes use of mathematics, computer
science and engineering

» Mostly the mathematics is discrete mathematics because
cryptology deals with finite objects such as alphabets and
blocks of characters

» We therefore look at modular arithmetic which only deals
with a finite number of values

» Understanding the algebraic structure of finite objects
helps to build useful cryptographic properties
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Factorisation

> Let Z denote the set of integers

» For aand bin Z, we say that a divides b (or ais a factor of
b, or write a|b) if there exists k in Z such that ak = b

» Aninteger p > 1 is said to be a prime number (or simply a
prime) if its only positive divisors are 1 and p

» We can test for prime numbers by trial division (up to the
square root of the number being tested)

> |n a later lecture we will look at a more efficient way to
check for primality
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LPrimes and Factorisation

Basic Properties of Factors

1. If adivides b and a divides c, then a divides b+ ¢
2. If pis a prime and p divides ab, then p divides a or b

Euclidean division
Foraand bin Z, a > b, there exist unique g and r in Z such

that:
a=bqg+r

where 0 < r < b.

6/32



Lecture 2: Number Theory, Groups and Finite Fields
L Basic Number Theory
I—GCD and the Euclidean Algorithm

Outline

Basic Number Theory

GCD and the Euclidean Algorithm

7132



Lecture 2: Number Theory, Groups and Finite Fields
I—Basic Number Theory
LGCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written ged(a, b) = d, if all
of the following hold:

8/32



Lecture 2: Number Theory, Groups and Finite Fields
LBasic Number Theory
LGCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written ged(a, b) = d, if all
of the following hold:

1. d divides aand b

8/32



Lecture 2: Number Theory, Groups and Finite Fields
LBasic Number Theory
LGCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written ged(a, b) = d, if all
of the following hold:

1. d divides aand b
2. if c divides a and b then c¢ divides d

8/32



Lecture 2: Number Theory, Groups and Finite Fields
LBasic Number Theory
LGCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written ged(a, b) = d, if all
of the following hold:

1. d divides aand b
2. if c divides a and b then c¢ divides d
3.d>0

8/32



Lecture 2: Number Theory, Groups and Finite Fields
LBasic Number Theory
LGCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value d is the GCD of a and b, written ged(a, b) = d, if all
of the following hold:

1. d divides aand b
2. if c divides a and b then c¢ divides d
3.d>0

We say that a and b are relatively prime if gcd(a, b) = 1
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Euclidean algorithm

One can find d = gecd(a, b).
Let g; be the quotient and r; be the remainder in the following.

a = bqgy+n,for0<r<b

b = rng+n,for0<rn<rn

rn = rgz+mr,for0<rn<nn
Ie—o = Tk_1Qk + Iy, for 0 < re < rg_q
k-1 = TIxQk41, Where re 4 =0

Then d = ry = ged(a, b).
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Result: gcd(a, b)
r—1 < a,

rp < b;

k «+ 0;

while r, # 0 do

end

Algorithm: Euclidean algorithm
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rp < b;

k «+ 0;

while r, # 0 do

Q|21
end
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Result: gcd(a, b)
r—1 < a,
rp < b;
k + 0;
while r, # 0 do
Ok L%
Mkt <= Te—1 — Qklk;

K<+ k+1;
end
k+— k—-1;
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Data: a,b

Result: gcd(a, b)

r—1 < a,

rp < b;

k < 0;

while r, # 0 do
QL%
Tkt < Tk—1 — Qklk;
K+ k+1;

end

k<« k—1;

return r;

Algorithm: Euclidean algorithm
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Back substitution (extended Euclidean algorithm)
» By back substitution in the Euclidean algorithm we can find
integers x and y where

ax+by =d=r.
» Starting with the penultimate line in the algorithm,
rv_o = rk_1Qqx + rx, We can compute
Mg = Ik—2 — Fk—1Qk-
Then we replace r,_4 in this equation from the next line up,
k-1 = Ik—3 — I'—2Qk—1 to get

rk = frx—2— (rk—3 — r'k—2Qk—1)Gk
= rk—2(1+ Gk—19k) — rk—3Gk
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» Now we can use this equation to replace rx_» from the line
before that, and continue in the same way.

» Finally replacing ry by i = a — bg; from the first line gives
us r in terms of a multiple of a and a multiple of b.

» We will be particularly interested in the case where
e = d=1.
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Modular arithmetic

Definition
b is a residue of a modulo nif a — b = kn for some integer k.

a=b (modn) < a—b=kn

Given a= b (mod n) and ¢ = d (mod n), then
1. a+c=b+d (mod n)
2. ac = bd (mod n)
3. ka= kb (mod n)

Note
This means we can always reduce the inputs modulo n before
performing multiplication or addition.
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Residue class

Definition
The set {ry, r1,...,rm_1} is called a complete set of residues
modulo n if, for every integer a, a = r; (mod n) for exactly one r;

» The numbers {0,1,...,n— 1} form a complete set of
residues modulo n since we can write any a as

a=gn+rfor0<r<n-1

» We usually choose this set as the complete set of residues
and denote it:
Zn=A{0,1,...,n—1}
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Notation: a mod n

We write
amodn

to denote the unique value & in the complete set of residues
{0,1,...,n— 1} with
/

d=a (modn)

In other words, a mod n is the remainder after dividing a by n
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A group is a set, G, with a binary operation, -, satisfying the
following conditions:

» Closure: a-be Gforalla,be G

» Identity: there exists an element, 1,sothata-1=1-a=a
forallae G

» Inverse: for all a € G there exists an element, b, so that
a-b=1forallace G

» Associative: forall a,b,c e Gthat(a-b)-c=a-(b-c)
We will only be looking at commutative (or abelian) groups
which satisfy also:

» Commutative: foralla,be Gthata-b=»b-a
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>

The order of a group G, often written |G|, is the number of
elementsin G

We write g* to denote repeated application of g using the
group operation — for example g = g - g - g. The order of
an element g € G, often written |g|, is the smallest integer
k with gk = 1
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Cyclic groups

» The order of a group G, often written |G|, is the number of
elementsin G
> We write g to denote repeated application of g using the
group operation — for example g = g - g - g. The order of
an element g € G, often written |g|, is the smallest integer
k with gk = 1
» A group element g is a generator for G if |g| = |G|
» A group is cyclicif it has a generator
Cyclic groups are important in cryptography because if we
construct a group G with large order then we can be sure that a
generator g can also take on the same large number of values.
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Computing inverses modulo n

» The inverse of a, if it exists, is a value x such that
ax=1 (mod n)

and is written a~' mod n.

» In cryptosystems we often need to find inverses so that we
can decrypt, or undo, certain operations.

Theorem
Let0 < a < n. Then a has an inverse modulo n if and only if
ged(a,n) =1.
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Modular inverses using Euclidean algorithm

» To find the inverse of a we can use the Euclidean algorithm
which is very efficient

» Remember that we want to solve for x, given a:
ax=1 (mod n)

» Since ged(a, n) = 1 we can find ax + ny = 1 for integers x
and y by Euclidean algorithm. Therefore:

ax = 1—-ny
ax = 1 (modn)
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Zp

> A complete set of residues modulo any prime p with the 0
removed forms a group under multiplication denoted Zj,.
» Some useful properties:
> The order of Z is p — 1
> Zpis cyclic
» Zj has many generators in general
> Zj can be represented as the multiplicative group of
integers {1,2,...,p—1}

21/32
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LGroups

Finding a generator of Z,

> A generator of Zj is an element of order p — 1

» A general theorem of algebraic groups (Lagrange) implies
that the order of any element must exactly divide p — 1

> To find a generator of Z; we can choose a value g and test
it as follows:

1. compute all the distinct prime factors of p — 1 and call them
fi,l,... £

2. then g is a generator as long as g®*~"/% = 1 mod p for
i=1,2,,...,r
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LGroups

Groups for composite modulus: Z

» For any n, which may or may not be prime, we can define
Z7, 1o be the group of residues which have an inverse
under multiplication

» Zr is a group but is not cyclic in general

» Finding the order of Zj, is difficult in general
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L Finite Fields

Fields

A fieldis a set, F, with two binary operations, + and -, satisfying
the following conditions:

> F is a commutative group under the + operation, with
identity element denoted 0

» F\ {0} is a commutative group under the - operation
» Distributive: for all a, b, c € F:

a-(b+c)=(a-b)+(a-c)
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L Finite Fields

Finite fields

» For secure communications we are usually only interested
in fields with a finite number of elements

» A famous theorem says that finite fields exist of size p” for
any prime p and positive integer n, and that no finite field
exists of other sizes

» The most interesting cases for us are fields of size p for a
prime p and fields of size 2" for some integer n

25/32
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L Finite Fields

Finite field GF(p)

» We often write Z, instead of GF(p)
» Multiplication and addition are done modulo p
> Multiplicative group is exactly Zj

» Later in the course we will see some public key encryption
and digital signature schemes using GF(p)
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Finite field GF(2)

» GF(2) is the simplest field. It has only two elements.

» Addition is binary addition modulo 2. This is the same as
the logical XOR (exclusive-OR) operation

» Since there is only one non-zero element we have a trivial
multiplicative group with the single element 1.

» We often use XOR in cryptography, usually written . For
bit strings a and b we write a @ b for the bit-wise XOR. For
example,

101011 =110
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Finite field GF(2")

> Arithmetic in these fields can be considered as polynomial
arithmetic where the field elements are polynomials with
binary coefficients

» This allow us to equate any n-bit string with a polynomial in
a natural way: for example 00101101 < x® + x3 + x2 4 1

» The field can be represented in different ways by use of a
primitive polynomial m(x)

» Addition and multiplication is defined by polynomial
addition and multiplication modulo m(x)

» Polynomial division can be done very efficiently in
hardware using shift registers
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Arithmetic in GF(28)

» This field is used for calculations in the AES block cipher

» To add two strings we add their coefficients modulo 2
(exclusive or)

» Multiplication is done with respect to a generator
polynomial which for AES is chosen as:

m(x) = x8 +x* + x3 4+ x + 1

» To multiply two strings we multiply them as polynomials
and then take their remainder after dividing by m(x)
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LBoolean Algebra

Boolean values

» A Boolean variable x takes the values of 1 or 0
representing true or false

» A Boolean function is any function with range (output) in
the set {0,1}

» Boolean functions are often represented by a truth table

» Each row in the table defines one possible input (tuple)
and the associated output value
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Boolean operations

» Logical AND: equivalent to multiplication modulo 2

X1 | Xo | Z=X{ A\ Xo
1)1 1
110 0
0|1 0
00 0
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L Boolean Algebra

Boolean operations

» Logical AND: equivalent to multiplication modulo 2

» Logical OR:

X1 | Xo | Z=X{ A\ Xo
1)1 1
110 0
0|1 0
00 0
X1 | Xo | Z=X1V Xo
1] 1 1
110 1
0|1 1
00 0
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Negation

Truth table

—X

o —

- O

We can also write =-x = x A 1
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