TTM4135

Relates to Stallings Chapters 2 and 5

Spring Semester, 2024

 Cryptography makes use of mathematics, computer science and engineering

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters
- We therefore look at modular arithmetic which only deals with a finite number of values

- Cryptography makes use of mathematics, computer science and engineering
- Mostly the mathematics is discrete mathematics because cryptology deals with finite objects such as alphabets and blocks of characters
- We therefore look at modular arithmetic which only deals with a finite number of values
- Understanding the algebraic structure of finite objects helps to build useful cryptographic properties

Outline

Basic Number Theory Primes and Factorisation GCD and the Euclidean Algorithm Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Basic Number Theory

Primes and Factorisation

Outline

Basic Number Theory Primes and Factorisation GCD and the Euclidean Ald

Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Basic Number Theory

Primes and Factorisation

Factorisation

► Let Z denote the set of integers

Primes and Factorisation

- ► Let Z denote the set of integers
- For a and b in Z, we say that a divides b (or a is a factor of b, or write a|b) if there exists k in Z such that ak = b

Primes and Factorisation

- Let Z denote the set of integers
- For a and b in Z, we say that a divides b (or a is a factor of b, or write a|b) if there exists k in Z such that ak = b
- An integer p > 1 is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p

Primes and Factorisation

- Let Z denote the set of integers
- For a and b in Z, we say that a divides b (or a is a factor of b, or write a|b) if there exists k in Z such that ak = b
- An integer p > 1 is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p
- We can test for prime numbers by trial division (up to the square root of the number being tested)

Primes and Factorisation

- Let Z denote the set of integers
- For a and b in Z, we say that a divides b (or a is a factor of b, or write a|b) if there exists k in Z such that ak = b
- An integer p > 1 is said to be a prime number (or simply a prime) if its only positive divisors are 1 and p
- We can test for prime numbers by trial division (up to the square root of the number being tested)
- In a later lecture we will look at a more efficient way to check for primality

Primes and Factorisation

Basic Properties of Factors

1. If a divides b and a divides c, then a divides b + c

Primes and Factorisation

Basic Properties of Factors

If a divides b and a divides c, then a divides b + c
 If p is a prime and p divides ab, then p divides a or b

Primes and Factorisation

Basic Properties of Factors

1. If a divides b and a divides c, then a divides b + c

2. If p is a prime and p divides ab, then p divides a or b

Euclidean division

For *a* and *b* in \mathbb{Z} , a > b, there exist unique *q* and *r* in \mathbb{Z} such that:

$$a = bq + r$$

where $0 \le r < b$.

Basic Number Theory

GCD and the Euclidean Algorithm

Outline

Basic Number Theory Primes and Factorisation GCD and the Euclidean Algorithm Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value *d* is the GCD of *a* and *b*, written gcd(a, b) = d, if all of the following hold:

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value *d* is the GCD of *a* and *b*, written gcd(a, b) = d, if all of the following hold:

1. d divides a and b

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value *d* is the GCD of *a* and *b*, written gcd(a, b) = d, if all of the following hold:

- 1. d divides a and b
- 2. if *c* divides *a* and *b* then *c* divides *d*

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value *d* is the GCD of *a* and *b*, written gcd(a, b) = d, if all of the following hold:

- 1. d divides a and b
- 2. if *c* divides *a* and *b* then *c* divides *d*
- **3**. *d* > 0

Basic Number Theory

GCD and the Euclidean Algorithm

Greatest common divisor (GCD)

The value *d* is the GCD of *a* and *b*, written gcd(a, b) = d, if all of the following hold:

- 1. d divides a and b
- 2. if *c* divides *a* and *b* then *c* divides *d*

3. *d* > 0

We say that *a* and *b* are *relatively prime* if gcd(a, b) = 1

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

$$a = bq_1 + r_1$$
, for $0 < r_1 < b$

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

$$a = bq_1 + r_1, \text{ for } 0 < r_1 < b$$

$$b = r_1q_2 + r_2, \text{ for } 0 < r_2 < r_1$$

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

$$a = bq_1 + r_1, \text{ for } 0 < r_1 < b$$

$$b = r_1q_2 + r_2, \text{ for } 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \text{ for } 0 < r_3 < r_2$$

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a, b). Let q_i be the quotient and r_i be the remainder in the following.

$$a = bq_1 + r_1, \text{ for } 0 < r_1 < b$$

$$b = r_1q_2 + r_2, \text{ for } 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \text{ for } 0 < r_3 < r_2$$

$$\vdots$$

 $r_{k-2} = r_{k-1}q_k + r_k$, for $0 < r_k < r_{k-1}$

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a, b). Let q_i be the quotient and r_i be the remainder in the following.

$$a = bq_{1} + r_{1}, \text{ for } 0 < r_{1} < b$$

$$b = r_{1}q_{2} + r_{2}, \text{ for } 0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{3} + r_{3}, \text{ for } 0 < r_{3} < r_{2}$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_{k} + r_{k}, \text{ for } 0 < r_{k} < r_{k-1}$$

$$r_{k-1} = r_{k}q_{k+1}, \text{ where } r_{k+1} = 0$$

1

Basic Number Theory

GCD and the Euclidean Algorithm

Euclidean algorithm

One can find d = gcd(a, b). Let q_i be the quotient and r_i be the remainder in the following.

$$a = bq_{1} + r_{1}, \text{ for } 0 < r_{1} < b$$

$$b = r_{1}q_{2} + r_{2}, \text{ for } 0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{3} + r_{3}, \text{ for } 0 < r_{3} < r_{2}$$

$$\vdots$$

$$r_{k-2} = r_{k-1}q_{k} + r_{k}, \text{ for } 0 < r_{k} < r_{k-1}$$

$$r_{k-1} = r_{k}q_{k+1}, \text{ where } r_{k+1} = 0$$

Then $d = r_k = \gcd(a, b)$.

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, b

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b)

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b) $r_{-1} \leftarrow a;$

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0;$

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, b **Result:** gcd(*a*, *b*) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b$; $k \leftarrow 0;$ while $r_k \neq 0$ do end

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0;$ while $r_k \neq 0$ do $q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor;$ end

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, bResult: gcd(a, b) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0;$ while $r_k \neq 0$ do $\begin{vmatrix} q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor; \\ r_{k+1} \leftarrow r_{k-1} - q_k r_k; \end{vmatrix}$ end
Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, b **Result:** gcd(*a*, *b*) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0$: while $r_k \neq 0$ do $q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor;$ $r_{k+1} \leftarrow r_{k-1} - q_k r_k;$ $k \leftarrow k+1;$ end

Algorithm: Euclidean algorithm

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, b **Result:** gcd(*a*, *b*) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0$: while $r_k \neq 0$ do $q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor;$ $r_{k+1} \leftarrow r_{k-1} - q_k r_k;$ $k \leftarrow k+1;$ end $k \leftarrow k - 1$;

Algorithm: Euclidean algorithm

Basic Number Theory

GCD and the Euclidean Algorithm

Data: a, b **Result:** gcd(*a*, *b*) $r_{-1} \leftarrow a;$ $r_0 \leftarrow b;$ $k \leftarrow 0$: while $r_k \neq 0$ do $q_k \leftarrow \lfloor \frac{r_{k-1}}{r_k} \rfloor;$ $r_{k+1} \leftarrow r_{k-1} - q_k r_k;$ $k \leftarrow k+1;$ end $k \leftarrow k - 1$; return r_k

Algorithm: Euclidean algorithm

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)

By back substitution in the Euclidean algorithm we can find integers x and y where

$$ax + by = d = r_k$$

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)

By back substitution in the Euclidean algorithm we can find integers x and y where

$$ax + by = d = r_k$$
.

Starting with the penultimate line in the algorithm, $r_{k-2} = r_{k-1}q_k + r_k$, we can compute

$$r_k=r_{k-2}-r_{k-1}q_k.$$

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)

By back substitution in the Euclidean algorithm we can find integers x and y where

$$ax + by = d = r_k$$

Starting with the penultimate line in the algorithm, $r_{k-2} = r_{k-1}q_k + r_k$, we can compute

$$r_k=r_{k-2}-r_{k-1}q_k.$$

Then we replace r_{k-1} in this equation from the next line up, $r_{k-1} = r_{k-3} - r_{k-2}q_{k-1}$ to get

GCD and the Euclidean Algorithm

Back substitution (extended Euclidean algorithm)

By back substitution in the Euclidean algorithm we can find integers x and y where

$$ax + by = d = r_k$$

Starting with the penultimate line in the algorithm, $r_{k-2} = r_{k-1}q_k + r_k$, we can compute

$$r_k=r_{k-2}-r_{k-1}q_k.$$

Then we replace r_{k-1} in this equation from the next line up, $r_{k-1} = r_{k-3} - r_{k-2}q_{k-1}$ to get

$$r_k = r_{k-2} - (r_{k-3} - r_{k-2}q_{k-1})q_k$$

= $r_{k-2}(1 + q_{k-1}q_k) - r_{k-3}q_k$

GCD and the Euclidean Algorithm

Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.

GCD and the Euclidean Algorithm

- Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.
- Finally replacing r_1 by $r_1 = a bq_1$ from the first line gives us r_k in terms of a multiple of *a* and a multiple of *b*.

GCD and the Euclidean Algorithm

- Now we can use this equation to replace r_{k-2} from the line before that, and continue in the same way.
- Finally replacing r_1 by $r_1 = a bq_1$ from the first line gives us r_k in terms of a multiple of *a* and a multiple of *b*.
- We will be particularly interested in the case where $r_k = d = 1$.

Basic Number Theory

Modular arithmetic

Outline

Basic Number Theory

Primes and Factorisation GCD and the Euclidean Algorithm Modular arithmetic

Groups

Finite Fields

Boolean Algebra

Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

 $a \equiv b \pmod{n} \iff a - b = kn.$

Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

$$a \equiv b \pmod{n} \iff a - b = kn.$$

Given $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then

Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

$$a \equiv b \pmod{n} \iff a - b = kn.$$

Given $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then 1. $a + c \equiv b + d \pmod{n}$

Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

$$a \equiv b \pmod{n} \iff a - b = kn.$$

Given
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then
1. $a + c \equiv b + d \pmod{n}$
2. $ac \equiv bd \pmod{n}$

Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

$$a \equiv b \pmod{n} \iff a - b = kn.$$

Given
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then
1. $a + c \equiv b + d \pmod{n}$
2. $ac \equiv bd \pmod{n}$
3. $ka \equiv kb \pmod{n}$

-Basic Number Theory

Modular arithmetic

Modular arithmetic

Definition *b* is a residue of *a* modulo *n* if a - b = kn for some integer *k*.

$$a \equiv b \pmod{n} \iff a - b = kn.$$

Given
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$, then
1. $a + c \equiv b + d \pmod{n}$
2. $ac \equiv bd \pmod{n}$
3. $ka \equiv kb \pmod{n}$

Note

This means we can always reduce the inputs modulo *n* before performing multiplication or addition.

-Basic Number Theory

Modular arithmetic

Residue class

Definition The set $\{r_0, r_1, ..., r_{n-1}\}$ is called a *complete set of residues* modulo *n* if, for every integer *a*, $a \equiv r_i \pmod{n}$ for exactly one r_i

Modular arithmetic

Residue class

Definition The set $\{r_0, r_1, ..., r_{n-1}\}$ is called a *complete set of residues* modulo *n* if, for every integer *a*, $a \equiv r_i \pmod{n}$ for exactly one r_i

► The numbers {0, 1, ..., n - 1} form a complete set of residues modulo n since we can write any a as

$$a = qn + r$$
 for $0 \le r \le n - 1$

- Modular arithmetic

Residue class

Definition

The set $\{r_0, r_1, \ldots, r_{n-1}\}$ is called a *complete set of residues* modulo *n* if, for every integer *a*, $a \equiv r_i \pmod{n}$ for exactly one r_i

► The numbers {0, 1, ..., n - 1} form a complete set of residues modulo n since we can write any a as

$$a = qn + r$$
 for $0 \le r \le n - 1$

We usually choose this set as the complete set of residues and denote it:

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

Modular arithmetic

Notation: a mod n

We write

a mod *n*

to denote the unique value a' in the complete set of residues $\{0, 1, \ldots, n-1\}$ with

 $a' \equiv a \pmod{n}$

In other words, a mod n is the remainder after dividing a by n

A group is a set, G, with a binary operation, \cdot , satisfying the following conditions:

• Closure: $a \cdot b \in G$ for all $a, b \in G$

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1, so that a ⋅ 1 = 1 ⋅ a = a for all a ∈ G

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1, so that a ⋅ 1 = 1 ⋅ a = a for all a ∈ G
- Inverse: for all a ∈ G there exists an element, b, so that a ⋅ b = 1 for all a ∈ G

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1, so that a ⋅ 1 = 1 ⋅ a = a for all a ∈ G
- Inverse: for all a ∈ G there exists an element, b, so that a ⋅ b = 1 for all a ∈ G
- ▶ Associative: for all $a, b, c \in G$ that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

A group is a set, G, with a binary operation, \cdot , satisfying the following conditions:

- Closure: $a \cdot b \in G$ for all $a, b \in G$
- Identity: there exists an element, 1, so that a ⋅ 1 = 1 ⋅ a = a for all a ∈ G
- Inverse: for all a ∈ G there exists an element, b, so that a ⋅ b = 1 for all a ∈ G

Associative: for all $a, b, c \in G$ that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ We will only be looking at commutative (or abelian) groups which satisfy also:

• Commutative: for all $a, b \in G$ that $a \cdot b = b \cdot a$

The order of a group G, often written |G|, is the number of elements in G

- The order of a group G, often written |G|, is the number of elements in G
- We write g^k to denote repeated application of g using the group operation for example g³ = g ⋅ g ⋅ g. The order of an element g ∈ G, often written |g|, is the smallest integer k with g^k = 1

- The order of a group G, often written |G|, is the number of elements in G
- We write g^k to denote repeated application of g using the group operation for example g³ = g ⋅ g ⋅ g. The order of an element g ∈ G, often written |g|, is the smallest integer k with g^k = 1
- A group element g is a generator for G if |g| = |G|

- The order of a group G, often written |G|, is the number of elements in G
- We write g^k to denote repeated application of g using the group operation for example g³ = g ⋅ g ⋅ g. The order of an element g ∈ G, often written |g|, is the smallest integer k with g^k = 1
- A group element g is a generator for G if |g| = |G|
- A group is cyclic if it has a generator

- The order of a group G, often written |G|, is the number of elements in G
- We write g^k to denote repeated application of g using the group operation for example g³ = g ⋅ g ⋅ g. The order of an element g ∈ G, often written |g|, is the smallest integer k with g^k = 1
- A group element g is a generator for G if |g| = |G|
- A group is cyclic if it has a generator

Cyclic groups are important in cryptography because if we construct a group G with large order then we can be sure that a generator g can also take on the same large number of values.

Computing inverses modulo *n*

The inverse of a, if it exists, is a value x such that

 $ax \equiv 1 \pmod{n}$

and is written $a^{-1} \mod n$.

Computing inverses modulo n

The inverse of a, if it exists, is a value x such that

 $ax \equiv 1 \pmod{n}$

and is written $a^{-1} \mod n$.

In cryptosystems we often need to find inverses so that we can decrypt, or undo, certain operations.

Computing inverses modulo n

The inverse of a, if it exists, is a value x such that

 $ax \equiv 1 \pmod{n}$

and is written $a^{-1} \mod n$.

In cryptosystems we often need to find inverses so that we can decrypt, or undo, certain operations.

Theorem

Let 0 < a < n. Then a has an inverse modulo n if and only if gcd(a, n) = 1.

Modular inverses using Euclidean algorithm

To find the inverse of a we can use the Euclidean algorithm which is very efficient
Modular inverses using Euclidean algorithm

- To find the inverse of a we can use the Euclidean algorithm which is very efficient
- Remember that we want to solve for x, given a:

 $ax \equiv 1 \pmod{n}$

Modular inverses using Euclidean algorithm

- To find the inverse of a we can use the Euclidean algorithm which is very efficient
- Remember that we want to solve for x, given a:

$$ax \equiv 1 \pmod{n}$$

Since gcd(a, n) = 1 we can find ax + ny = 1 for integers x and y by Euclidean algorithm. Therefore:

$$ax = 1 - ny$$
$$ax \equiv 1 \pmod{n}$$

 \mathbb{Z}_p^*

A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.
- Some useful properties:

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.
- Some useful properties:
 - The order of \mathbb{Z}_p^* is p-1

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.
- Some useful properties:
 - The order of \mathbb{Z}_p^* is p-1
 - $\triangleright \mathbb{Z}_p^*$ is cyclic

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.
- Some useful properties:
 - The order of \mathbb{Z}_p^* is p-1
 - $\triangleright \mathbb{Z}_p^*$ is cyclic
 - $\blacktriangleright \mathbb{Z}_{p}^{*}$ has many generators in general

- A complete set of residues modulo any prime p with the 0 removed forms a group under multiplication denoted Z^{*}_p.
- Some useful properties:
 - The order of \mathbb{Z}_p^* is p-1
 - $\triangleright \mathbb{Z}_p^*$ is cyclic
 - Z^{*}_p has many generators in general
- ► Z^{*}_p can be represented as the multiplicative group of integers {1,2,...,p-1}

▶ A generator of \mathbb{Z}_p^* is an element of order p-1

- A generator of \mathbb{Z}_p^* is an element of order p-1
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide p – 1

- A generator of \mathbb{Z}_p^* is an element of order p-1
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide p – 1
- ► To find a generator of Z^{*}_p we can choose a value g and test it as follows:

- A generator of \mathbb{Z}_p^* is an element of order p-1
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide p – 1
- ► To find a generator of Z^{*}_p we can choose a value g and test it as follows:
 - 1. compute all the distinct prime factors of p 1 and call them f_1, f_2, \ldots, f_r

- A generator of \mathbb{Z}_p^* is an element of order p-1
- A general theorem of algebraic groups (Lagrange) implies that the order of any element must exactly divide p – 1
- ► To find a generator of Z^{*}_p we can choose a value g and test it as follows:
 - 1. compute all the distinct prime factors of p 1 and call them f_1, f_2, \ldots, f_r
 - 2. then g is a generator as long as $g^{(p-1)/f_i} \neq 1 \mod p$ for $i = 1, 2, \dots, r$

Groups for composite modulus: \mathbb{Z}_n^*

For any n, which may or may not be prime, we can define Z^{*}_n to be the group of residues which have an inverse under multiplication

Groups for composite modulus: \mathbb{Z}_n^*

- For any n, which may or may not be prime, we can define Z^{*}_n to be the group of residues which have an inverse under multiplication
- $\triangleright \mathbb{Z}_n^*$ is a group but is not cyclic in general

Groups for composite modulus: \mathbb{Z}_n^*

- For any n, which may or may not be prime, we can define Z^{*}_n to be the group of residues which have an inverse under multiplication
- $\triangleright \mathbb{Z}_n^*$ is a group but is not cyclic in general
- Finding the order of \mathbb{Z}_n^* is difficult in general

Fields

A *field* is a set, F, with two binary operations, + and \cdot , satisfying the following conditions:

Fields

A *field* is a set, F, with two binary operations, + and \cdot , satisfying the following conditions:

 F is a commutative group under the + operation, with identity element denoted 0

Fields

A *field* is a set, F, with two binary operations, + and \cdot , satisfying the following conditions:

- F is a commutative group under the + operation, with identity element denoted 0
- $F \setminus \{0\}$ is a commutative group under the \cdot operation

Fields

A *field* is a set, F, with two binary operations, + and \cdot , satisfying the following conditions:

- F is a commutative group under the + operation, with identity element denoted 0
- $F \setminus \{0\}$ is a commutative group under the \cdot operation

▶ Distributive: for all $a, b, c \in F$:

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

 For secure communications we are usually only interested in fields with a finite number of elements

Finite fields

- For secure communications we are usually only interested in fields with a finite number of elements
- A famous theorem says that finite fields exist of size pⁿ for any prime p and positive integer n, and that no finite field exists of other sizes

Finite fields

- For secure communications we are usually only interested in fields with a finite number of elements
- A famous theorem says that finite fields exist of size pⁿ for any prime p and positive integer n, and that no finite field exists of other sizes
- The most interesting cases for us are fields of size p for a prime p and fields of size 2ⁿ for some integer n

```
Finite field GF(p)
```

• We often write \mathbb{Z}_p instead of GF(p)

Finite field GF(p)

- We often write \mathbb{Z}_p instead of GF(p)
- Multiplication and addition are done modulo p

Finite field GF(p)

- We often write \mathbb{Z}_p instead of GF(p)
- Multiplication and addition are done modulo p
- ► Multiplicative group is exactly Z^{*}_p

Finite field GF(p)

- We often write \mathbb{Z}_p instead of GF(p)
- Multiplication and addition are done modulo p
- ► Multiplicative group is exactly Z^{*}_p
- Later in the course we will see some public key encryption and digital signature schemes using GF(p)

- GF(2) is the simplest field. It has only two elements.
- Addition is binary addition modulo 2. This is the same as the logical XOR (exclusive-OR) operation

- GF(2) is the simplest field. It has only two elements.
- Addition is binary addition modulo 2. This is the same as the logical XOR (exclusive-OR) operation
- Since there is only one non-zero element we have a trivial multiplicative group with the single element 1.

- GF(2) is the simplest field. It has only two elements.
- Addition is binary addition modulo 2. This is the same as the logical XOR (exclusive-OR) operation
- Since there is only one non-zero element we have a trivial multiplicative group with the single element 1.
- We often use XOR in cryptography, usually written ⊕. For bit strings *a* and *b* we write *a* ⊕ *b* for the bit-wise XOR. For example,

 $101 \oplus 011 = 110$

 Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- ▶ This allow us to equate any n-bit string with a polynomial in a natural way: for example 00101101 $\leftrightarrow x^5 + x^3 + x^2 + 1$

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- ▶ This allow us to equate any n-bit string with a polynomial in a natural way: for example 00101101 $\leftrightarrow x^5 + x^3 + x^2 + 1$
- The field can be represented in different ways by use of a primitive polynomial m(x)

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- ▶ This allow us to equate any n-bit string with a polynomial in a natural way: for example 00101101 $\leftrightarrow x^5 + x^3 + x^2 + 1$
- The field can be represented in different ways by use of a primitive polynomial m(x)
- Addition and multiplication is defined by polynomial addition and multiplication modulo m(x)

- Arithmetic in these fields can be considered as polynomial arithmetic where the field elements are polynomials with binary coefficients
- ▶ This allow us to equate any n-bit string with a polynomial in a natural way: for example 00101101 $\leftrightarrow x^5 + x^3 + x^2 + 1$
- The field can be represented in different ways by use of a primitive polynomial m(x)
- Addition and multiplication is defined by polynomial addition and multiplication modulo m(x)
- Polynomial division can be done very efficiently in hardware using shift registers
This field is used for calculations in the AES block cipher

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)
- Multiplication is done with respect to a generator polynomial which for AES is chosen as:

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

- This field is used for calculations in the AES block cipher
- To add two strings we add their coefficients modulo 2 (exclusive or)
- Multiplication is done with respect to a generator polynomial which for AES is chosen as:

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

To multiply two strings we multiply them as polynomials and then take their remainder after dividing by m(x) Lecture 2: Number Theory, Groups and Finite Fields

Boolean values

A Boolean variable x takes the values of 1 or 0 representing true or false

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean *function* is any function with range (output) in the set {0,1}

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean *function* is any function with range (output) in the set {0,1}
- Boolean functions are often represented by a truth table

Boolean values

- A Boolean variable x takes the values of 1 or 0 representing true or false
- A Boolean *function* is any function with range (output) in the set {0,1}
- Boolean functions are often represented by a truth table
- Each row in the table defines one possible input (tuple) and the associated output value

Boolean Algebra

Boolean operations

Logical AND: equivalent to multiplication modulo 2

<i>x</i> ₁	<i>x</i> ₂	$z = x_1 \wedge x_2$
1	1	1
1	0	0
0	1	0
0	0	0

Boolean Algebra

Boolean operations

Logical AND: equivalent to multiplication modulo 2

<i>x</i> ₁	<i>x</i> ₂	$z = x_1 \wedge x_2$
1	1	1
1	0	0
0	1	0
0	0	0

► Logical OR:

<i>x</i> ₁	<i>x</i> ₂	$z = x_1 \vee x_2$
1	1	1
1	0	1
0	1	1
0	0	0

Lecture 2: Number Theory, Groups and Finite Fields

Boolean Algebra

Negation

Truth table

We can also write $\neg x = x \land 1$