RANDOMNESS 2

TTM4205 - Lecture 3
Caroline Sandsbråten
29.08.2023

Contents

Who am I?
Elliptic Curves
ECDSA

Breaking ECDSA
Breaking (Bad) ECDSA in practice
Interesting Literature

Contents

Who am I?

Elliptic Curves
ECDSA

Breaking ECDSA
Breaking (Bad) ECDSA in practice
Interesting Literature

Caroline Sandsbråten

- 2nd year PhD student at IIK
- Tjerand is my PhD supervisor
- Researching lattice-based PQC
- I finished KomTek in 2022, thesis on ECC
- I volunteer at Samfundet. Previously in Fotogjengen, currently in ITK.

Contents

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA
Breaking (Bad) ECDSA in practice
Interesting Literature

Elliptic Curves

Definitions

- (Elliptic Curves) Let K be a field. An elliptic curve over K is a non-singular cubic curve whose points satisfy the equation

$$
A x^{3}+B x^{2} y+C x y^{2}+D y^{3}+E x^{2}+F x y+G y^{2}+H x+I y+J=0 .
$$

Elliptic Curves

Definitions

- (Elliptic Curves) Let K be a field. An elliptic curve over K is a non-singular cubic curve whose points satisfy the equation

$$
A x^{3}+B x^{2} y+C x y^{2}+D y^{3}+E x^{2}+F x y+G y^{2}+H x+I y+J=0 .
$$

- (Elliptic Curves over \mathbb{F}_{p}) Let \mathbb{F}_{p}, where $p \neq 2, p \neq 3$ be a finite field. An elliptic curve over \mathbb{F}_{p} is a non-singular cubic curve whose points satisfy the equation $y^{2}=x^{3}+A x+B$, and the non-singular condition $4 A^{3}+27 B^{2} \neq 0$.

Why Elliptic Curves?

Hard problems

- (DLP) Let p be a prime, and let a, b be integers such that $a \bmod p \neq 0$ and b $\bmod p \neq 0$. Assume there exists an integer x such that $a^{x} \equiv b \bmod p$ The DLP is then to find x such that $a^{x} \equiv b \bmod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^{x}=b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.

Why Elliptic Curves?

Hard problems

- (DLP) Let p be a prime, and let a, b be integers such that $a \bmod p \neq 0$ and b $\bmod p \neq 0$. Assume there exists an integer x such that $a^{x} \equiv b \bmod p$ The DLP is then to find x such that $a^{x} \equiv b \bmod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^{x}=b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.
- Using Elliptic Curves, the same problems becomes the ECDLP:

Why Elliptic Curves?

Hard problems

- (DLP) Let p be a prime, and let a, b be integers such that $a \bmod p \neq 0$ and b $\bmod p \neq 0$. Assume there exists an integer x such that $a^{x} \equiv b \bmod p$ The DLP is then to find x such that $a^{x} \equiv b \bmod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^{x}=b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.
- Using Elliptic Curves, the same problems becomes the ECDLP:
- (ECDLP) Let $P_{1}, P_{2} \in E\left(\mathbb{F}_{p}\right)$, where $E\left(\mathbb{F}_{p}\right)$ is an elliptic curve over a finite field \mathbb{F}_{p} and p is a prime, and P_{1}, and P_{2} is points on the elliptic curve $E\left(\mathbb{F}_{p}\right)$. The ECDLP is then to find an integer x satisfying the equation $x P_{1}=P_{2}$.

Contents

Who am I?

Elliptic Curves
ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice
Interesting Literature

ECDSA Signature Algorithm

(Input): Message m, private key α, the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

ECDSA Signature Algorithm

(Input): Message m, private key α, the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.
(Output): Digital signature r, s.

ECDSA Signature Algorithm

(Input): Message m, private key α, the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.
(Output): Digital signature r, s.
(Algorithm):

```
\(h \leftarrow \operatorname{hash}(m)\)
\(k \leftarrow \operatorname{random}(0, n)\)
\((x, y) \leftarrow k G\)
\(r \leftarrow x \bmod n\)
\(s \leftarrow k^{-1} \cdot(h+r \cdot \alpha) \bmod p\)
return \(\mathrm{r}, \mathrm{s}\)
```


ECDSA Signature Algorithm

(Input): Message m, private key α, the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.
(Output): Digital signature r, s.
(Algorithm):

```
\(h \leftarrow \operatorname{hash}(m)\)
\(k \leftarrow \operatorname{random}(0, n)\)
\((x, y) \leftarrow k G\)
\(r \leftarrow x \bmod n\)
\(s \leftarrow k^{-1} \cdot(h+r \cdot \alpha) \bmod p\)
return \(\mathrm{r}, \mathrm{s}\)
```

- What would happen if k is not random?

ECDSA Signature Verification

(Input): Message m, public key
Q, the elliptic curve E, and
domain parameters of the elliptic
curve G, and p.

ECDSA Signature Verification

(Input): Message m, public key
Q, the elliptic curve E, and domain parameters of the elliptic curve G, and p.
(Output): Boolean value. True if the signature is verified as being correct, False if not.

ECDSA Signature Verification

(Input): Message m, public key
Q, the elliptic curve E, and domain parameters of the elliptic curve G, and p.
(Output): Boolean value. True if the signature is verified as being correct, False if not.

(Algorithm):

if $Q=O$ or Q is not on E then
return False
end if
$h \leftarrow h a s h(m)$
$u_{1} \leftarrow h \cdot s^{-1} \bmod p$
$u_{2} \leftarrow r \cdot s^{-1} \bmod p$
$(x, y) \leftarrow u_{1} \cdot G+u_{2} \cdot Q$
if $(\mathrm{x}, \mathrm{y})=O$ then
return False
end if
if $r \equiv x \bmod p$ then return True
end if
return False

Contents

Who am I?
Elliptic Curves
ECDSA
Breaking ECDSA
Breaking (Bad) ECDSA in practice
Interesting Literature

What mistakes do we see in practice?

- Using a hash as a nonce

What mistakes do we see in practice?

- Using a hash as a nonce
- "Smart" software made to trick people

What mistakes do we see in practice?

- Using a hash as a nonce
- "Smart" software made to trick people
- People trying and failing to do everything "by hand"

What mistakes do we see in practice?

- Using a hash as a nonce
- "Smart" software made to trick people
- People trying and failing to do everything "by hand"
- And more maybe?

Two methods

- One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)

Two methods

- One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)
- One utilizing the Hidden Number Problem and lattice basis reduction

Two methods

- One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)
- One utilizing the Hidden Number Problem and lattice basis reduction
- Today: The Hidden Number Problem (HNP)

Lattices

Definition

Let $B=\left[b_{1}, \ldots, b_{k}\right] \in \mathbb{R}^{n \cdot k}$ be a linearly independent set in \mathbb{R}^{n}. The lattice $L(B)$ generated by matrix B is the set of all linear combinations of the columns of B with integer coefficients. B is thus a basis for lattice $L(B)$.

$$
L(B)=\left\{B x: x \in \mathbb{Z}^{k}\right\}=\left\{\sum_{i=1}^{k} x_{i} \cdot b_{i}: x_{i} \in \mathbb{Z}\right\}
$$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice L, find a vector $v \in L \backslash\{0\}$ such that $\|v\| \leq\left\|u_{i}\right\| \forall u_{i} \in L \backslash\{0\}$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice L, find a vector $v \in L \backslash\{0\}$ such that $\|v\| \leq\left\|u_{i}\right\| \forall u_{i} \in L \backslash\{0\}$

Definition (Closest Vector Problem.)

Given a lattice L, and a vector u, find the lattice vector v such that $\|u-v\| \leq\left\|u-v_{i}\right\|, \forall v_{i} \in L$.

Solving Lattice Problems

1. The Lenstra-Lenstra-Lovàsz Algorithm (LLL)

Solving Lattice Problems

1. The Lenstra-Lenstra-Lovàsz Algorithm (LLL)
2. The Block Korkine-Zolotarev Algorithm (BKZ)

The Hidden Number Problem (HNP)

> Adversary is given d pairs of integers $\left\{\left(t_{i}, u_{i}\right)\right\}_{i=1}^{d}$
> Such that $t_{i} x-u_{i} \quad \bmod p=b_{i}$
> Where $\left|b_{i}\right|<B$, for some $B<p$

Contents

```
Who am I?
Elliptic Curves
ECDSA
Breaking ECDSA
```


Breaking (Bad) ECDSA in practice

Interesting Literature

Lets try our attack

Lets write some code! (or just look at it)

Contents

Who am I?

Elliptic Curves
ECDSA

Breaking ECDSA
Breaking (Bad) ECDSA in practice
Interesting Literature

Biased Nonce Sense: Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies

Links
https://eprint.iacr.org/2019/023
Authors

- Joachim Breitner
- Nadia Heninger

The curious case of the half-half Bitcoin ECDSA nonces

Links
https://eprint.iacr.org/2023/841

Authors

- Dylan Rowe
- Joachim Breitner
- Nadia Heninger

Fast Practical Lattice Reduction through Iterated Compression

Links

Paper: https://eprint.iacr.org/2023/237
Implementation: https://github.com/keeganryan/flatter

Authors

- Keegan Ryan
- Nadia Heninger

Books

- Elliptic Curves: Number Theory and Cryptography
https://people.cs.nctu.edu.tw/~rjchen/ECC2012S/Elliptic\ Curves\% 20Number\%20Theory\%20And\%20Cryptography\%202n.pdf
- Bitcoin and Cryptocurrency Technologies
https://bitcoinbook.cs.princeton.edu/

