

RANDOMNESS 2

TTM4205 - Lecture 3

Caroline Sandsbråten

29.08.2023

Contents

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Contents

Who am I?

Elliptic Curves

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Caroline Sandsbråten

- 2nd year PhD student at IIK
- ► Tjerand is my PhD supervisor
- Researching lattice-based PQC
- ▶ I finished KomTek in 2022, thesis on ECC
- ▶ I volunteer at Samfundet. Previously in Fotogjengen, currently in ITK.

Contents

Who am I?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Elliptic Curves

Definitions

lacktriangle (Elliptic Curves) Let K be a field. An elliptic curve over K is a non-singular cubic curve whose points satisfy the equation

$$Ax^{3} + Bx^{2}y + Cxy^{2} + Dy^{3} + Ex^{2} + Fxy + Gy^{2} + Hx + Iy + J = 0.$$

Elliptic Curves

Definitions

- ► (Elliptic Curves) Let K be a field. An elliptic curve over K is a non-singular cubic curve whose points satisfy the equation $Ax^3 + Bx^2y + Cxy^2 + Dy^3 + Ex^2 + Fxy + Gy^2 + Hx + Iy + J = 0$.
- ▶ (Elliptic Curves over \mathbb{F}_p) Let \mathbb{F}_p , where $p \neq 2, p \neq 3$ be a finite field. An elliptic curve over \mathbb{F}_p is a non-singular cubic curve whose points satisfy the equation $u^2 = x^3 + Ax + B$, and the non-singular condition $4A^3 + 27B^2 \neq 0$.

Why Elliptic Curves?

Hard problems

▶ (DLP) Let p be a prime, and let a, b be integers such that $a \mod p \neq 0$ and $b \mod p \neq 0$. Assume there exists an integer x such that $a^x \equiv b \mod p$ The DLP is then to find x such that $a^x \equiv b \mod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^x = b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.

Why Elliptic Curves?

Hard problems

- ▶ (DLP) Let p be a prime, and let a, b be integers such that $a \mod p \neq 0$ and $b \mod p \neq 0$. Assume there exists an integer x such that $a^x \equiv b \mod p$ The DLP is then to find x such that $a^x \equiv b \mod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^x = b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.
- ▶ Using Elliptic Curves, the same problems becomes the ECDLP:

Why Elliptic Curves?

Hard problems

- ▶ (DLP) Let p be a prime, and let a, b be integers such that $a \mod p \neq 0$ and $b \mod p \neq 0$. Assume there exists an integer x such that $a^x \equiv b \mod p$ The DLP is then to find x such that $a^x \equiv b \mod p$. More generally, we have the following. Let G be any multiplicative group, and let $a, b \in G$. Assume that $a^x = b$ for some integer x. The DLP is then to find x such that the above equation is satisfied.
- Using Elliptic Curves, the same problems becomes the ECDLP:
- ▶ (ECDLP) Let $P_1, P_2 \in E(\mathbb{F}_p)$, where $E(\mathbb{F}_p)$ is an elliptic curve over a finite field \mathbb{F}_p and p is a prime, and P_1 , and P_2 is points on the elliptic curve $E(\mathbb{F}_p)$. The ECDLP is then to find an integer x satisfying the equation $xP_1 = P_2$.

Contents

Who am l?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

(Input): Message m, private key α , the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

(Input): Message m, private key α , the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

(Output): Digital signature r, s.

(Input): Message m, private key α , the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

(Output): Digital signature r, s.

(Algorithm):

```
\begin{aligned} h &\leftarrow hash(m) \\ k &\leftarrow random(0,n) \\ (x,y) &\leftarrow kG \\ r &\leftarrow x \mod n \\ s &\leftarrow k^{-1} \cdot (h+r \cdot \alpha) \mod p \end{aligned} return r. S
```


(Input): Message m, private key α , the elliptic curve $E(\mathbb{F})$, and the domain parameters, G, and p.

(Output): Digital signature r, s.

(Algorithm):

```
\begin{aligned} h &\leftarrow hash(m) \\ k &\leftarrow random(0,n) \\ (x,y) &\leftarrow kG \\ r &\leftarrow x \mod n \\ s &\leftarrow k^{-1} \cdot (h+r \cdot \alpha) \mod p \end{aligned} return r. S
```

 \blacktriangleright What would happen if k is not random?

ECDSA Signature Verification

(Input): Message m, public key Q, the elliptic curve E, and domain parameters of the elliptic curve G, and p.

ECDSA Signature Verification

(Input): Message m, public key Q, the elliptic curve E, and domain parameters of the elliptic curve G, and p.

(Output): Boolean value. True if the signature is verified as being correct, False if not.

ECDSA Signature Verification

(Input): Message m, public key Q, the elliptic curve E, and domain parameters of the elliptic curve G, and p.

(Output): Boolean value. True if the signature is verified as being correct. False if not.

(Algorithm):

```
if Q = O or Q is not on E then
    return False
end if
h \leftarrow hash(m)
u_1 \leftarrow h \cdot s^{-1} \mod p
u_2 \leftarrow r \cdot s^{-1} \mod p
(x,y) \leftarrow u_1 \cdot G + u_2 \cdot Q
if (x, y) = O then
    return False
end if
```

if $r \equiv x \mod p$ then return True end if return False

Contents

Who am l?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Using a hash as a nonce

- Using a hash as a nonce
- "Smart" software made to trick people

- Using a hash as a nonce
- "Smart" software made to trick people
- People trying and failing to do everything "by hand"

- Using a hash as a nonce
- "Smart" software made to trick people
- People trying and failing to do everything "by hand"
- And more maybe?

Two methods

One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)

Two methods

One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)

One utilizing the Hidden Number Problem and lattice basis reduction

Two methods

- One utilizing Fourier Analysis (Read about it here: https://eprint.iacr.org/2020/615)
- One utilizing the Hidden Number Problem and lattice basis reduction
- ► Today: The Hidden Number Problem (HNP)

Lattices

Definition

Let $B=[b_1,\ldots,b_k]\in\mathbb{R}^{n\cdot k}$ be a linearly independent set in \mathbb{R}^n . The lattice L(B) generated by matrix B is the set of all linear combinations of the columns of B with integer coefficients. B is thus a basis for lattice L(B).

$$L(B) = \left\{ Bx : x \in \mathbb{Z}^k \right\} = \left\{ \sum_{i=1}^k x_i \cdot b_i : x_i \in \mathbb{Z} \right\}$$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice L, find a vector $v \in L \setminus \{0\}$ such that $||v|| \le ||u_i|| \forall u_i \in L \setminus \{0\}$

Lattice Problems

Definition (Shortest Vector Problem.)

Given a lattice L, find a vector $v \in L \setminus \{0\}$ such that $||v|| \le ||u_i|| \forall u_i \in L \setminus \{0\}$

Definition (Closest Vector Problem.)

Given a lattice L, and a vector u, find the lattice vector v such that $||u-v|| \leq ||u-v_i||, \forall v_i \in L$.

Solving Lattice Problems

1. The Lenstra-Lenstra-Lovàsz Algorithm (LLL)

Solving Lattice Problems

- 1. The Lenstra-Lenstra-Lovàsz Algorithm (LLL)
- 2. The Block Korkine-Zolotarev Algorithm (BKZ)

The Hidden Number Problem (HNP)

Adversary is given
$$d$$
 pairs of integers $\{(t_i, u_i)\}_{i=1}^d$
Such that $t_i x - u_i \mod p = b_i$ (1)
Where $|b_i| < B$, for some $B < p$

Contents

Who am l?

Elliptic Curves

ECDSA

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Lets try our attack

Lets write some code! (or just look at it)

Contents

Elliptic Curves

Breaking ECDSA

Breaking (Bad) ECDSA in practice

Interesting Literature

Biased Nonce Sense: Lattice Attacks against Weak ECDSA Signatures in Cryptocurrencies

Links

https://eprint.iacr.org/2019/023

Authors

- ► Joachim Breitner
- Nadia Heninger

The curious case of the half-half Bitcoin ECDSA nonces

Links

https://eprint.iacr.org/2023/841

Authors

- Dylan Rowe
- ► Joachim Breitner
- Nadia Heninger

Fast Practical Lattice Reduction through Iterated Compression

Links

```
Paper: https://eprint.iacr.org/2023/237
Implementation: https://github.com/keeganryan/flatter
```

Authors

- Keegan Ryan
- Nadia Heninger

Books

► Elliptic Curves: Number Theory and Cryptography

```
https://people.cs.nctu.edu.tw/~rjchen/ECC2012S/Elliptic%20Curves% 20Number%20Theory%20And%20Cryptography%202n.pdf
```

Bitcoin and Cryptocurrency Technologies

```
https://bitcoinbook.cs.princeton.edu/
```

